• Симплекс-метод решения злп. Решить задачу линейного программирования симплекс методом Составление симплекс таблицы

    Симплексный метод − это метод упорядоченного перебора опорных планов (упорядоченность обеспечивается монотонным изменением значения целевой функции при переходе к очередному плану). При этом необходимо соблюдать принцип: каждый следующий шаг должен улучшить или, в крайнем случае, не ухудшить значение целевой функции.

    Для решения ЗЛП симплекс-методом ее приводят к каноническому виду, т.е. из ограничений – неравенств надо сделать ограничения – равенства. Для этого в каждое ограничение вводится дополнительная неотрицательная балансовая переменная со знаком «+», если знак неравенства «£», и со знаком «–», ели знак неравенства «³».

    В целевой функции эти дополнительные переменные входят с нулевыми коэффициентами, т.е. запись целевой функции не изменится. Каждую переменную, на которую не наложено условие неотрицательности, можно представить в виде разности двух неотрицательных переменных: .

    Если ограничения задачи отображают наличие и расход ресурсов, то числовое значение дополнительной переменной в плане задачи, записанной в канонической форме, равно объему неиспользованного ресурса.

    Для решения задачи симплекс-методом будем использовать укороченные симплексные таблицы системы линейных уравнений и метод модифицированного жорданова исключения .

    1. Составляем первый опорный план

    Задача остается прежней. Приведем стандартную форму системы неравенств (1) в каноническую форму системы уравнений путем введения дополнительных балансовых переменных x 3 , x 4 , x 5 , x 6 .

    В экономическом смысле значения дополнительных переменных x 3 , x 4 , x 5 определяют остатки сырья после реализации продукции.

    Матрица полученной системы уравнений имеет вид:

    Видно, что в матрице A базисным минором 4-го порядка является определитель, составленный из единичных коэффициентов при дополнительных переменных x 3 , x 4 , x 5 , x 6 , так как он отличен от нуля и равен 1. Это означает, что векторы-столбцы при этих переменных является линейно независимыми, т.е. образуют базис , а соответствующие им переменные x 3 , x 4 , x 5 , x 6 являются базисными (основными). Переменные x 1 , x 2 будут называться свободными (неосновными).

    Если свободным переменным x 1 и x 2 задавать различные значения, то, решая систему относительно базисных переменных, получим бесконечное множество частных решений. Если свободным переменным задавать только нулевые значения, то из бесконечного множества частных решений выделяют базисные решения – опорные планы.

    Чтобы выяснить, могут ли переменные быть базисными, необходимо вычислить определитель, состоящий из коэффициентов при этих переменных. Если данный определитель не равен нулю, то эти переменные могут быть базисными.


    Количество базисных решений и соответствующее ему число групп базисных переменных может быть не более, чем , где n –общее число переменных, r – число базисных переменных, r m n .

    Для нашей задачи r = 4; n = 6. Тогда , т.е. возможны 15 групп из 4-х базисных переменных (или 15 базисных решений).

    Разрешим систему уравнений относительно базисных переменных x 3 , x 4 , x 5 , x 6:

    Полагая, что свободные переменные x 1 = 0, x 2 = 0, получим значения базисных переменных: x 3 = 312; x 4 = 15; x 5 = 24; x 6 = –10, т.е. базисное решение будет = (0; 0; 312; 15; 24; –10).

    Данное базисное решение является недопустимым , т.к. x 6 = –10 ≤ 0, а по условию ограничений x 6 ≥ 0. Поэтому вместо переменной x 6 в качестве базисной надо взять другую переменную из числа свободных x 1 или x 2 .

    Дальнейшее решение будем выполнять, используя укороченные симплексные таблицы, заполнив строки первой таблицы коэффициентами системы следующим образом (табл. 1):

    Таблица 1

    F –строка называется индексной . Она заполняется коэффициентами целевой функции, взятыми с противоположными знаками, так как уравнение функции можно представить в виде F = 0 – (– 4x 1 – 3x 2).

    В столбце свободных членов b i есть отрицательный элемент b 4 = –10, т.е. решение системы является недопустимым. Чтобы получить допустимое решение (опорный план), элемент b 4 надо сделать неотрицательным.

    Выбираем x 6 -строку с отрицательным свободным членом. В этой строке есть отрицательные элементы. Выбираем любой из них, например, «–1» в x 1 -столбце, и x 1 -столбец принимаем в качестве разрешающего столбца (он определит, что переменная x 1 перейдет из свободных в базисные).

    Делим свободные члены b i на соответствующие элементы a is разрешающего столбца, получаем оценочные отношения Θ i = = {24, 15, 12, 10}. Из них выбираем наименьшее положительное (minΘ i =10), которое будет соответствовать разрешающей строке . Разрешающая строка определяет переменную x j , которая на следующем шаге выступает из базиса и станет свободной. Поэтому x 6 -строка является разрешающей строкой, а элемент «–1» – разрешающим элементом . Обводим его кружком. Переменные x 1 и x 6 меняются местами.

    Оценочные отношения Θ i в каждой строке определяются по правилам:

    1) Θ i = , если b i и a is имеют разные знаки;

    2) Θ i = ∞, если b i = 0 и a is < 0;

    3) Θ i = ∞, если a is = 0;

    4) Θ i = 0, если b i = 0 и a is > 0;

    5) Θ i = , если b i и a is имеют одинаковые знаки.

    Совершаем шаг модифицированного жорданова исключения (ШМЖИ) с разрешающим элементом и составляем новую таблицу (табл. 2) по следующему правилу:

    1) на месте разрешающего элемента (РЭ) устанавливается величина, ему обратная, т.е. ;

    2) элементы разрешающей строки делятся на РЭ;

    3) элементы разрешающего столбца делятся на РЭ и знак меняется;

    4) остальные элементы находятся по правилу прямоугольника:

    Из табл. 2 видно, что свободные члены в b i -столбце являются неотрицательными, следовательно, получено первоначальное допустимое решение – первый опорный план = (10; 0; 182; 5; 4; 0). При этом значение функции F () = 40. Геометрически это соответствует вершине F (10; 0) многоугольника решений (рис. 1).

    Таблица 2

    2. Проверяем план на оптимальность. Опорный план не оптимальный, так как в F -строке имеется отрицательный коэффициент «–4». Улучшаем план.

    3. Нахождение нового опорного плана

    Выбираем разрешающий элемент по правилу:

    Выбираем наименьший отрицательный коэффициент в F -строке «–4», который и определяет разрешающий столбец – x 6 ; переменную x 6 переводим в базисные;

    Находим отношения Θ i , среди них выбираем наименьшее положительное, которое соответствует разрешающей строке:

    min Θ i = min {14, 5, 2, ∞} = 2, следовательно, x 5 -строка – разрешающая, переменную x 5 переводим в свободные (переменные x 5 и x 6 меняются местами).

    На пересечении разрешающих строки и столбца стоит разрешающий элемент «2»;

    Выполняем шаг ШМЖИ, строим табл. 3 по вышеприведенному правилу и получаем новый опорный план = (12; 0; 156; 3; 0; 2).

    Таблица 3

    4. Проверка нового опорного плана на оптимальность

    Опорный план также не является оптимальным, так как в F -строке имеется отрицательный коэффициент «–1». Значение функции F () = 48, что геометрически соответствует вершине E (12; 0) многоугольника решений (рис. 1). Улучшаем план.

    5. Нахождение нового опорного плана

    x 2 -столбец – разрешающий, так как в F -строке наименьший отрицательный коэффициент «–1» находится в x 2 -столбце (Δ 2 = –1). Находим наименьшее Θ i : min Θ i = min {≈ 9, 6, ∞, 24} = 6, следовательно, x 4 -строка – разрешающая. Разрешающий элемент «1/2». Меняем местами переменные x 2 и x 4 . Выполняем шаг ШМЖИ, строим табл. 4, получаем новый опорный план = (9; 6; 51; 0; 0; 5).

    6. Проверка опорного плана на оптимальность

    В F -строке все коэффициенты неотрицательны, следовательно, опорный план является оптимальным. Геометрически соответствует точке D (9;6) (см. рис. 1). Оптимальный план дает максимальное значение целевой функции у.е.

    Симплекс-метод - это итеративный процесс направленного решения системы уравнений по шагам, который начинается с опорного решения и в поисках лучшего варианта движется по угловым точкам области допустимого решения, улучшающих значение целевой функции до тех пор, пока целевая функция не достигнет оптимального значения.

    Назначение сервиса . Сервис предназначен для онлайн решения задач линейного программирования (ЗЛП) симплекс-методом в следующих формах записи:

    • в виде симплексной таблицы (метод жордановых преобразований); базовой форме записи;
    • модифицированным симплекс-методом ; в столбцовой форме; в строчечной форме.

    Инструкция . Выберите количество переменных и количество строк (количество ограничений). Полученное решение сохраняется в файле Word и Excel . При этом ограничения типа x i ≥0 не учитывайте. Если в задании для некоторых x i отсутствуют ограничения, то ЗЛП необходимо привести к КЗЛП, или воспользоваться этим сервисом . При решении автоматически определяется использование М-метода (симплекс-метод с искусственным базисом) и двухэтапного симплекс-метода .

    Вместе с этим калькулятором также используют следующие:
    Графический метод решения ЗЛП
    Решение транспортной задачи
    Решение матричной игры
    С помощью сервиса в онлайн режиме можно определить цену матричной игры (нижнюю и верхнюю границы), проверить наличие седловой точки, найти решение смешанной стратегии методами: минимакс, симплекс-метод, графический (геометрический) метод, методом Брауна.
    Экстремум функции двух переменных
    Задачи динамического программирования
    Распределить 5 однородных партий товара между тремя рынками так, чтобы получить максимальный доход от их продажи. Доход от продажи на каждом рынке G(X) зависит от количества реализованных партий товара Х и представлен в таблице.

    Объем товара Х (в партиях) Доход G(X)
    1 2 3
    0 0 0 0
    1 28 30 32
    2 41 42 45
    3 50 55 48
    4 62 64 60
    5 76 76 72

    Алгоритм симплекс-метода включает следующие этапы:

    1. Составление первого опорного плана . Переход к канонической форме задачи линейного программирования путем введения неотрицательных дополнительных балансовых переменных.
    2. Проверка плана на оптимальность . Если найдется хотя бы один коэффициент индексной строки меньше нуля, то план не оптимальный, и его необходимо улучшить.
    3. Определение ведущих столбца и строки . Из отрицательных коэффициентов индексной строки выбирается наибольший по абсолютной величине. Затем элементы столбца свободных членов симплексной таблицы делит на элементы того же знака ведущего столбца.
    4. Построение нового опорного плана . Переход к новому плану осуществляется в результате пересчета симплексной таблицы методом Жордана-Гаусса .

    Если необходимо найти экстремум целевой функции, то речь идет о поиске минимального значения (F(x) → min , см. пример решения минимизации функции) и максимального значения (F(x) → max , см. пример решения максимизации функции)

    Экстремальное решение достигается на границе области допустимых решений в одной из вершин угловых точек многоугольника, либо на отрезке между двумя соседними угловыми точками.

    Основная теорема линейного программирования . Если целевая функция ЗЛП достигает экстремального значения в некоторой точке области допустимых решений, то она принимает это значение в угловой точке. Если целевая функция ЗЛП достигает экстремального значения более чем в одной угловой точке, то она принимает это же значение в любой из выпуклой линейной комбинации этих точек.

    Суть симплекс-метода . Движение к точке оптимума осуществляется путем перехода от одной угловой точки к соседней, которая ближе и быстрее приближает к X опт. Такую схему перебора точек, называемую симплекс-метод , предложил Р. Данцигом.
    Угловые точки характеризуются m базисными переменными, поэтому переход от одной угловой точки к соседней возможно осуществить сменой в базисе только одной базисной переменной на переменную из небазиса.
    Реализация симплекс-метода в силу различных особенностей и постановок задач ЛП имеет различные модификации .

    Построение симплекс-таблиц продолжается до тех пор, пока не будет получено оптимальное решение.

    Как с помощью симплекс-таблицы определить, что решение задачи линейного программирования является оптимальным?
    Если последняя строка (значения целевой функции) не содержит отрицательных элементов, следовательно, найдет оптимальный план.

    Замечание 1 . Если одна из базисных переменных равна нулю, то крайняя точка, соответствующая такому базисному решению - вырожденная. Вырожденность возникает, когда имеется неоднозначность в выборе направляющей строки. Можно вообще не заметить вырожденности задачи, если выбрать другую строку в качестве направляющей. В случае неоднозначности нужно выбирать строку с наименьшим индексом, чтобы избежать зацикливания.

    Замечание 2 . Пусть в некоторой крайней точке все симплексные разности неотрицательные D k ³ 0 (k = 1..n+m),т.е. получено оптимальное решение и существует такой А k - небазисный вектор, у которого D k = 0. Тогда максимум достигается по крайней мере в двух точках, т.е. имеет место альтернативный оптимум. Если ввести в базис эту переменную x k , значение целевой функции не изменится.

    Замечание 3 . Решение двойственной задачи находится в последней симплексной таблице. Последние m компонент вектора симплексных разностей(в столбцах балансовых переменных) - оптимальное решение двойственной задачи. Значение целевых функций прямой и двойственной задачи в оптимальных точках совпадают.

    Замечание 4 . При решении задачи минимизации в базис вводится вектор с наибольшей положительной симплексной разностью. Далее применяется тот же алгоритм, что и для задачи максимизации.

    Если задано условие «Необходимо, чтобы сырье III вида было израсходовано полностью», то соответствующее условие представляет собой равенство.

    Аналитическое введение в симплекс-метод

    Симплексный метод является универсальным методом линейного программирования.

    Итак, если мы решаем ЗЛП в канонической форме , то система ограничений - это обычная система линейных уравнений. При решении задач ЛП получаются системы линейных уравнений, имеющие, как правило, бесконечно много решений.

    Например, пусть дана система

    Здесь число уравнений равно 2, а неизвестных - 3, уравнений меньше. Выразим x 1 и x 2 через x 3:

    Это общее решение системы. если переменной x 3 придавать произвольные числовые значения, то будем находить частные решения системы. Например, x 3 =1 → x 1 =1 → x 2 =6. Имеем (1, 6, 1) - частное решение. Пусть x 3 =2 → x 1 =-3, x 2 = 1, (-3, 1, 2) - другое частное решение. Таких частных решений бесконечно много.

    Переменные x 1 и x 2 называются базисными , а переменная x 3 - не базисная, свободная .

    Совокупность переменных x 1 и x 2 образует базис: Б (x 1 , x 2). Если x 3 = 0, то полученное частное решение (5, 11, 0) называется базисным решением, соответствующим базису Б (x 1 , x 2).

    Базисным называется решение, соответствующее нулевым значениям свободных переменных .
    В качестве базисных можно было взять и другие переменные: (x 1 , x 3) или (x 2 , x 3).
    Как переходить от одного базиса Б (x 1 , x 2) к другому базису Б (x 1 , x 3)?
    Для этого надо переменную x 3 перевести в базисные, а x 2 - в небазисные т. е. в уравнениях надо x 3 выразить через x 2 и подставить в 1-е:

    Б (x 1 , x 3 ), таково: (-19/5; 0; 11/5).

    Если теперь от базиса Б (x 1 , x 3) нам захочется перейти к базису Б (x 2 , x 3), то

    Базисное решение, соответствующее базису Б (x 2 , x 3): (0;19/4; 7/8).
    Из трех найденных базисных решений решение, соответствующее базису Б (x 1 , x 3) - отрицательное x 1 < 0, нас в ЗЛП интересуют только неотрицательные решения.

    Если задача ЛП имеет решение, то оно достигается на множестве базисных неотрицательных решений системы ограничений канонической формы.

    Поэтому идея симплекс-метода и состоит в последовательном переходе от одного базиса к другому, лучшему с точки зрения значения целевой функции.

    Пример . Решить задачу ЛП.

    Функцию F = x 2 - x 1 → min необходимо минимизировать при заданной системе ограничений:
    -2x 1 + x 2 + x 3 = 2
    x 1 + x 2 + x 5 = 5
    x 1 - 2x 2 + x 4 = 12
    x i ≥ 0, i = 1, 5

    Эти ограничения могут рассматриваться как произошедшие из неравенств, а переменные x 3 , x 5 , x 4 - как дополнительные.
    Запишем ограничения, выбрав базис из переменных Б { x 3 , x 4 , x 5 }:

    Этому базису соответствует базисное неотрицательное решение
    x 1 = 0, x 2 = 0, x 3 = 2, x 4 = 2, x 5 = 5 или (0, 0, 2, 2, 5).
    Теперь нужно выразить F через небазисные переменные, в нашем случае это уже сделано: F = x 2 - x 1 .
    Проверим, достигла ли функция F своего минимального значения. Для этого базисного решения F = 0 - 0 = 0 - значение функции равно 0. Но его можно уменьшить, если x 1 будет возрастать, т. к. коэффициент в функции при x 1 отрицателен. Однако при увеличении x 1 значения переменных x 4 , x 5 уменьшаются (смотрите второе и третье равенство системы ограничений). Переменная x 1 не может быть увеличена больше чем до 2, иначе x 4 станет отрицательной (ввиду равенства 2), и не больше, чем до 5, иначе x 5 - отрицателен. Итак, из анализа равенств следует, что переменную x 1 можно увеличить до 2, при этом значение функции уменьшится.
    Перейдем к новому базису Б 2 , введя переменную x 1 в базис вместо x 4 .
    Б 2 {x 1 , x 3 , x 5 }.
    Выразим эти базисные переменные через небазисные. Для этого сначала выразим x 1 из второго уравнения и подставим в остальные, в том числе и в функцию.

    Базисное решение, соответствующее базису Б 3 {х 1 , х 2 , х 3 }, выписывается (4, 1, 9, 0, 0), и функция принимает значение F = -3. Заметим, что значение F уменьшилось, т. е. улучшилось по сравнению с предыдущим базисом.
    Посмотрев на вид целевой функции , заметим, что улучшить, т. е. уменьшить значение F нельзя и только при x 4 = 0, x 5 = 0 значение F = -3. как только x 4 , x 5 станут положительными, значение F только увеличится, т. к. коэффициенты при x 4 , x 5 положительны. Значит, функция F достигла своего оптимального значения F * = -3. Итак, наименьшее значение F , равное -3, достигается при x 1 * = 4, x 2 * = 1, x 3 * = 9, x 4 * = 0, x 5 * = 0.

    На этом примере очень наглядно продемонстрирована идея метода: постепенно переходя от базиса к базису, при этом всегда обращая внимание на значения целевой функции, которые должны улучшиться, мы приходим к такому базису, в котором значение целевой функции улучшить нельзя, оно оптимально. Заметим, что базисов конечное число, поэтому количество шагов, совершаемых нами до того нужного базиса, конечно.


    . Алгоритм симплекс-метода

    Пример 5.1. Решить следующую задачу линейного программирования симплекс-методом:

    Решение:

    I итерация:

    х3 , х4 , х5 , х6 х1 ,х2 . Выразим базисные переменные через свободные:

    Приведем целевую функциюк следующему виду:

    На основе полученной задачи сформируем исходную симплекс-таблицу:

    Таблица 5.3

    Исходная симплекс-таблица

    Оценочные отношения

    Согласно определению базисного решения свободные переменные равны нулю, а значения базисных переменных – соответствующим значениям свободных чисел, т.е.:

    3 этап: проверка совместности системы ограничений ЗЛП.

    На данной итерации (в таблице 5.3) признак несовместности системы ограничений (признак 1) не выявлен (т.е. нет строки с отрицательным свободным числом (кроме строки целевой функции), в которой не было бы хотя бы одного отрицательного элемента (т.е. отрицательного коэффициента при свободной переменной)).

    На данной итерации (в таблице 5.3) признак неограниченности целевой функции (признак 2) не выявлен (т.е. нет колонки с отрицательным элементом в строке целевой функции (кроме колонки свободных чисел), в которой не было бы хотя бы одного положительного элемента).

    Так как найденное базисное решение не содержит отрицательных компонент, то оно является допустимым.

    6 этап: проверка оптимальности.

    Найденное базисное решение не является оптимальным, так как согласно признаку оптимальности (признак 4) в строке целевой функции не должно быть отрицательных элементов (свободное число данной строки при рассмотрении данного признака не учитывается). Следовательно, согласно алгоритму симплекс-метода переходим к 8 этапу.

    Так как найденное базисное решение допустимое, то поиск разрешающей колонки будем производить по следующей схеме: определяем колонки с отрицательными элементами в строке целевой функции (кроме колонки свободных чисел). Согласно таблице 5.3, таких колонок две: колонка «х1 » и колонка «х2 ». Из таких колонок выбирается та, которая содержит наименьший элемент в строке целевой функции. Она и будет разрешающей. Колонка «х2 » содержит наименьший элемент (–3) в сравнении с колонкой «х1

    Для определения разрешающей строки находим положительные оценочные отношения свободных чисел к элементам разрешающей колонки, строка, которой соответствует наименьшее положительное оценочное отношение, принимается в качестве разрешенной.

    Таблица 5.4

    Исходная симплекс-таблица

    В таблице 5.4 наименьшее положительное оценочное отношение соответствует строке «х5 », следовательно, она будет разрешающей.

    Элемент, расположенный на пересечение разрешающей колонки и разрешающей строки, принимается в качестве разрешающего. В нашем примере – это элемент , который расположен на пересечении строки «х5 » и колонки «х2 ».

    Разрешающий элемент показывает одну базисную и одну свободную переменные, которые необходимо поменять местами в симплекс-таблице, для перехода к новому «улучшенному» базисному решению. В данном случае это переменные х5 и х2 , в новой симплекс-таблице (таблице 5.5) их меняем местами.

    9.1. Преобразование разрешающего элемента.

    Разрешающий элемент таблицы 5.4 преобразовывается следующим образом:

    Полученный результат вписываем в аналогичную клетку таблицы 5.5.

    9.2. Преобразование разрешающей строки.

    Элементы разрешающей строки таблицы 5.4 делим на разрешающий элемент данной симплекс-таблицы, результаты вписываются в аналогичные ячейки новой симплекс-таблицы (таблицы 5.5). Преобразования элементов разрешающей строки приведены в таблице 5.5.

    9.3. Преобразование разрешающей колонки.

    Элементы разрешающей колонки таблицы 5.4 делим на разрешающий элемент данной симплекс-таблицы, а результат берется с обратным знаком. Полученные результаты вписываются в аналогичные ячейки новой симплекс-таблицы (таблицы 5.5). Преобразования элементов разрешающей колонки приведены в таблице 5.5.

    9.4. Преобразование остальных элементов симплекс-таблицы.

    Преобразование остальных элементов симплекс-таблицы (т.е. элементов не расположенных в разрешающей строке и разрешающей колонке) осуществляется по правилу «прямоугольника».

    К примеру, рассмотрим преобразование элемента, расположенного на пересечении строки «х3 » и колонки «», условно обозначим его «х3 ». В таблице 5.4 мысленно вычерчиваем прямоугольник, одна вершина которого располагается в клетке, значение которой преобразуем (т.е. в клетке «х3 »), а другая (диагональная вершина) – в клетке с разрешающим элементом. Две другие вершины (второй диагонали) определяются однозначно. Тогда преобразованное значение клетки «х3 » будет равно прежнему значению данной клетки минус дробь, в знаменателе которой разрешающий элемент (из таблицы 5.4), а в числителе произведение двух других неиспользованных вершин, т.е.:

    «х3 »: .

    Аналогично преобразуются значения других клеток:

    «х3 х1 »: ;

    «х4 »: ;

    «х4 х1 »: ;

    «х6 »: ;

    «х6 х1 »: ;

    «»: ;

    «х1 »: .

    В результате данных преобразований получили новую симплекс- таблицу (таблица 5.5).

    II итерация:

    1 этап: составление симплекс-таблицы.

    Таблица 5.5

    Симплекс-таблица II итерации

    Оценочные

    отношения

    2 этап: определение базисного решения.

    В результате проведенных симплекс-преобразований получили новое базисное решение (таблица 5.5):

    Как видно, при данном базисном решении значение целевой функции =15, что больше чем при предыдущем базисном решении.

    Не совместность системы ограничений в соответствии с признаком 1 в таблице 5.5 не выявлена.

    4 этап: проверка ограниченности целевой функции.

    Неограниченность целевой функции в соответствии с признаком 2 в таблице 5.5 не выявлена.

    5 этап: проверка допустимости найденного базисного решения.

    Найденное базисное решение в соответствии с признаком 4 не оптимальное, так как в строке целевой функции симплекс-таблицы (таблица 5.5) содержится отрицательный элемент: –2 (свободное число данной строки при рассмотрении данного признака не учитывается). Следовательно, переходим к 8 этапу.

    8 этап: определение разрешающего элемента.

    8.1. Определение разрешающей колонки.

    Найденное базисное решение допустимое, определяем колонки с отрицательными элементами в строке целевой функции (кроме колонки свободных чисел). Согласно таблице 5.5, такой колонкой является только одна колонка: «х1 ». Следовательно, ее принимаем в качестве разрешенной.

    8.2. Определение разрешающей строки.

    Согласно полученным значениям положительных оценочных отношений в таблице 5.6, минимальным является отношение, соответствующее строке «х3 ». Следовательно, ее принимаем в качестве разрешенной.

    Таблица 5.6

    Симплекс-таблица II итерации

    Оценочные

    отношения

    3/1=3 – min

    9 этап: преобразование симплекс-таблицы.

    Преобразования симплекс-таблицы (таблицы 5.6) выполняются аналогично, как и в предыдущей итерации. Результаты преобразований элементов симплекс-таблицы приведены в таблице 5.7.

    III итерация

    По результатам симплекс-преобразований предыдущей итерации составляем новую симплекс-таблицу:

    Таблица 5.7

    Симплекс-таблица III итерации

    Оценочные

    отношения

    2 этап: определение базисного решения.

    В результате проведенных симплекс-преобразований получили новое базисное решение (таблица 5.7):

    3 этап: проверка совместности системы ограничений.

    Не совместность системы ограничений в соответствии с признаком 1 в таблице 5.7 не выявлена.

    4 этап: проверка ограниченности целевой функции.

    Неограниченность целевой функции в соответствии с признаком 2 в таблице 5.7 не выявлена.

    5 этап: проверка допустимости найденного базисного решения.

    Найденное базисное решение в соответствии с признаком 3 допустимое, так как не содержит отрицательных компонент.

    6 этап: проверка оптимальности найденного базисного решения.

    Найденное базисное решение в соответствии с признаком 4 не оптимальное, так как в строке целевой функции симплекс-таблицы (таблица 5.7) содержится отрицательный элемент: –3 (свободное число данной строки при рассмотрении данного признака не учитывается). Следовательно, переходим к 8 этапу.

    8 этап: определение разрешающего элемента.

    8.1. Определение разрешающей колонки.

    Найденное базисное решение допустимое, определяем колонки с отрицательными элементами в строке целевой функции (кроме колонки свободных чисел). Согласно таблице 5.7, такой колонкой является только одна колонка: «х5 ». Следовательно, ее принимаем в качестве разрешенной.

    8.2. Определение разрешающей строки.

    Согласно полученным значениям положительных оценочных отношений в таблице 5.8, минимальным является отношение, соответствующее строке «х4 ». Следовательно, ее принимаем в качестве разрешенной.

    Таблица 5.8

    Симплекс-таблица III итерации

    Оценочные

    отношения

    5/5=1 – min

    9 этап: преобразование симплекс-таблицы.

    Преобразования симплекс-таблицы (таблицы 5.8) выполняются аналогично, как и в предыдущей итерации. Результаты преобразований элементов симплекс-таблицы приведены в таблице 5.9.

    IV итерация

    1 этап: построение новой симплекс-таблицы.

    По результатам симплекс-преобразований предыдущей итерации составляем новую симплекс-таблицу:

    Таблица 5.9

    Симплекс-таблица IV итерации

    Оценочные

    отношения

    –(–3/5)=3/5

    –(1/5)=–1/5

    –(9/5)=–9/5

    –(–3/5)=3/5

    2 этап: определение базисного решения.

    В результате проведенных симплекс-преобразований получили новое базисное решение, согласно таблице 5.9 решение следующее:

    3 этап: проверка совместности системы ограничений.

    Не совместность системы ограничений в соответствии с признаком 1 в таблице 5.9 не выявлена.

    4 этап: проверка ограниченности целевой функции.

    Неограниченность целевой функции в соответствии с признаком 2 в таблице 5.9 не выявлена.

    5 этап: проверка допустимости найденного базисного решения.

    Найденное базисное решение в соответствии с признаком 3 допустимое, так как не содержит отрицательных компонент.

    6 этап: проверка оптимальности найденного базисного решения.

    Найденное базисное решение в соответствии с признаком 4 оптимальное, так как в строке целевой функции симплекс-таблицы (таблица 5.9) нет отрицательных элементов (свободное число данной строки при рассмотрении данного признака не учитывается).

    7 этап: проверка альтернативности решения.

    Найденное решение является единственным, так как в строке целевой функции (таблица 5.9) нет нулевых элементов (свободное число данной строки при рассмотрении данного признака не учитывается).

    Ответ: оптимальное значение целевой функции рассматриваемой задачи =24, которое достигается при.

    Пример 5.2. Решить вышеприведенную задачу линейного программирования при условии, что целевая функция минимизируется:

    Решение:

    I итерация:

    1 этап: формирование исходной симплекс-таблицы.

    Исходная задача линейного программирования задана в стандартной форме. Приведем ее к каноническому виду путем введения в каждое из ограничений-неравенств дополнительной неотрицательной переменной, т.е.

    В полученной системе уравнений примем в качестве разрешенных (базисных) переменные х3 , х4 , х5 , х6 , тогда свободными переменными будут х1 ,х2 . Выразим базисные переменные через свободные.

    Краткая теория

    Решение задачи

    Построение модели

    Через обозначим товарооборот 1-го, 2-го и третьего вида товаров соответственно.

    Тогда целевая функция, выражающая получаемую прибыль:

    Ограничения по материально-денежным ресурсам:

    Кроме того, по смыслу задачи

    Получаем следующую задачу линейного программирования:

    Заполняем симплексную таблицу 0-й итерации.

    БП Симплексные
    отношения
    8 6 4 0 0 0 0 520 16 18 9 1 0 0 65/2 0 140 7 7 2 0 1 0 20 0 810 9 2 1 0 0 1 90 0 -8 -6 -4 0 0 0

    Так как мы решаем задачу на максимум – наличие в индексной строке отрицательных чисел при решении задачи на максимум свидетельствует о том, что нами оптимальное решение не получено и что от таблицы 0-й итерации необходимо перейти к следующей.

    Переход к следующей итерации осуществляем следующим образом:

    Ведущий столбец соответствует .

    Ключевая строка определяется по минимуму соотношений свободных членов и членов ведущего столбца (симплексных отношений):

    На пересечении ключевого столбца и ключевой строки находим разрешающий элемент, т.е.7.

    Теперь приступаем к составлению 1-й итерации. Вместо единичного вектора вводим вектор .

    В новой таблице на месте разрешающего элемента пишем 1, все остальные элементы ключевого столбца –нули. Элементы ключевой строки делятся на разрешающий элемент. Все остальные элементы таблицы вычисляются по правилу прямоугольника.

    Получаем таблицу 1-й итерации:

    БП Симплексные
    отношения
    8 6 4 0 0 0 0 200 0 2 31/7 1 -16/7 0 1400/31 8 20 1 1 2/7 0 1/7 0 70 0 630 0 -7 -11/7 0 -9/7 1 - 160 0 2 -12/7 0 8/7 0

    Ключевой столбец для 1-й итерации соответствует .

    Находим ключевую строку, для этого определяем:

    На пересечении ключевого столбца и ключевой строки находим разрешающий элемент, т.е. 31/7.

    Вектор выводим из базиса и вводим вектор .

    Получаем таблицу 2-й итерации:

    БП Симплексные
    отношения
    8 6 4 0 0 0 4 1400/31 0 14/31 1 7/31 -16/31 0 8 220/31 1 27/31 0 -2/31 9/31 0 0 21730/31 0 -195/31 0 11/31 -65/31 1 7360/31 0 86/31 0 12/31 8/31 0

    В индексной строке все члены неотрицательные, поэтому получено следующее решение задачи линейного программирования (выписываем из столбца свободных членов):

    Таким образом, необходимо продавать 7,1 тыс.р. товара 1-го вида и 45,2 тыс.р. товара 3-го вида. Товар 2-го вида продавать невыгодно. При этом прибыль будет максимальна и составит 237,4 тыс.р. При реализации оптимального плана остаток ресурса 3-го вида составит 701 ед.

    Если вам сейчас не требуется помощь, но может потребоваться в дальнейшем, то, чтобы не потерять контакт,

    >> >> >> Симплекс-метод

    Симплекс-метод

    Решение любой можно найти симплексным методом . Прежде чем применять симплекс-метод, следует записать исходную задачу в форме основной задачи линейного программирования, если она не имеет такой формы записи.

    Симплексный метод решения задачи линейного программирования основан на переходе от одного опорного плана к другому, при котором значение целевой функции возрастает (при условии, что данная задача имеет оптимальный план и каждый ее опорный план является невырожденным). Указанный переход возможен, если известен какой-нибудь исходный опорный план. Рассмотрим задачу, для которой этот план можно непосредственно записать.

    Пусть требуется найти максимальное значение функции

    при условиях

    Здесь и – заданные постоянные числа

    Векторная форма данной задачи имеет следующий вид: найти максимум функции

    при условиях

    то по определению опорного плана является опорным планом данной задачи (последние компонент вектора Х равны нулю). Этот план определяется системой единичных векторов которые образуют базис m- мерного пространства. Поэтому каждый из векторов а также могут быть представлены в виде линейной комбинации векторов данного базиса. Пусть

    Положим Так как векторы единичные, то и а

    Теорема 5

    (признак оптимальности опорного плана). Опорный план задачи (22) – (24) является оптимальным, если для любого j

    Теорема 6.

    Если для некоторого j=k и среди чисел нет положительных , то целевая функция (22) задачи (22) – (24) не ограничена на множестве ее планов.

    Теорема 7.

    Если опорный план Х задачи (22) – (24)невырожден и , но среди чисел есть положительные (не все ), то существует опорный план X" такой, что

    Сформулированные теоремы позволяют проверить, является ли найденный опорный план оптимальным, и выявить целесообразность перехода к новому опорному плану.

    Исследование опорного плана на оптимальность, а также дальнейший вычислительный процесс удобнее вести, если условия задачи и первоначальные данные, полученные после определения исходного опорного плана, записать так, как показано в табл. 3.

    В столбце С 6 этой таблицы записывают коэффициенты при неизвестных целевой функции, имеющие те же индексы, что и векторы данного базиса.

    В столбце записывают положительные компоненты исходного опорного плана, в нем же в результате вычислений получают положительные компоненты оптимального плана. Столбцы векторов представляют собой коэффициенты разложения этих векторов по векторам данного базиса.

    В табл. 3 первые m строк определяются исходными данными задачи, а показатели (m+1)-й строки вычисляют. В этой строке в столбце вектора записывают значение целевой функции, которое она принимает при данном опорном плане, а в столбце вектора значение

    Значение Z j находится как скалярное произведение вектора на вектор

    Значение равно скалярному произведению вектора P 0 на вектор :

    После заполнения таблицы 3 исходный опорный план проверяют на оптимальность. Для этого просматривают элементы -й строки таблицы. В результате может иметь место один из следующих трех случаев:

    1) для j=m+1, (при ). Поэтому в данном случае числа для всех j от 1 до n ;

    2) для некоторого j , и все соответствующие этому индексу величины

    3) для некоторых индексов j , и для каждого такого j , по крайней мере, одно из чисел положительно.

    В первом случае на основании признака оптимальности исходный опорный план является оптимальным. Во втором случае целевая функция не ограничена сверху на множестве планов, а в третьем случае можно перейти от исходного плана к новому опорному плану, при котором значение целевой функции увеличится. Этот переход от одного опорного плана к другому осуществляется исключением из исходного базиса какого-нибудь из векторов и введением в него нового вектора. В качестве вектора, вводимого в базис, можно взять любой из векторов имеющий индекс j , для которого . Пусть, например, и решено ввести в базис вектор

    Для определения вектора, подлежащего исключению из базиса, находят для всех Пусть этот минимум достигается при i=r . Тогда из базиса исключают вектор , а число называют разрешающим элементом.

    Столбец и строку, на пересечении которых находится разрешающий элемент, называют направляющими.

    После выделения направляющей строки и направляющего столбца находят новый опорный план и коэффициенты разложения векторов через векторы нового базиса, соответствующего новому опорному плану. Это легко реализовать, если воспользоваться методом Жордана–Гаусса. При этом можно показать, что положительные компоненты нового опорного плана вычисляются по формулам

    (25)

    а коэффициенты разложения векторов через векторы нового базиса, соответствующего новому опорному плану, – по формулам

    (26)

    После вычисления и согласно формулам (25) и (26) их значения заносят в табл. 4. Элементы -й строки этой таблицы могут быть вычислены либо по формулам

    (27)

    (28)

    либо на основании их определения.

    Таблица 3

    i Базис С б P 0 c 1 c 2 ... c r ... c m c m+1 ... c k ... c n
    P 1 P 2 ... P r ... P m P m+1 ... P k ... P n
    1 P 1 c 1 b 1 1 0 ... 0 ... 0 a 1m+1 ... a 1k ... a 1n
    2 P 2 c 2 b 2 0 1 ... 0 ... 0 a 2m+1 ... a 2k ... a 2n
    : : : : : : : : : : : : : : :
    r P r c r b r 0 0 ... 1 ... 0 a rm+2 ... a rk ... a rn
    : : : : : : : : : : : : : : :
    m P m c m b m 0 0 ... 0 ... 1 a mm+1 ... a mk ... a mn
    m+1 F m 0 0 ... 0 ... 0 Δ m+1 ... Δ k ... Δ n

    Таблица 4

    i Баз
    ис
    С б P 0 c 1 c 2 ... c r ... c m c m+1 ... c k ... c n
    P 1 P 2 ... P r ... P m P m+1 ... P k ... P n
    1 P 1 c 1 b 1 1 0 ... a " 1r ... 0 a " 1m+1 ... 0 ... a " 1n
    2 P 2 c 2 b 2 0 1 ... a " 2r ... 0 a " 2m+1 ... 0 ... a " 2n
    : : : : : : : : : : : : : : :
    r P r c r b r 0 0 ... a " rr ... 0 a " rm+2 ... 1 ... a " rn
    : : : : : : : : : : : : : : :
    m P m c m b m 0 0 ... a " mr ... 1 a " mm+1 ... 0 ... a " mn
    m+1 F m 0 0 ... z " r -c r ... 0 z " m+1 -c m+1 ... 0 ... z " n -c n

    Наличие двух способов нахождения элементов -й строки позволяет осуществлять контроль правильности проводимых вычислений.

    Из формулы (27) следует, что при переходе от одного опорного плана к другому наиболее целесообразно ввести в базис вектор , имеющий индекс j , при котором максимальным по абсолютной величине является число . Однако с целью упрощения вычислительного процесса в дальнейшем будем вектор, вводимый в базис, определять, исходя из максимальной абсолютной величины отрицательных чисел . Если же таких чисел несколько, то в базис будем вводить вектор, имеющий такой же индекс, как и максимальное из чисел , определяемых данными числами

    Итак, переход от одного опорного плана к другому сводится к переходу от одной симплекс-таблицы к другой. Элементы новой симплекс-таблицы можно вычислить как с помощью рекуррентных формул (25)-(28), так и по правилам, непосредственно вытекающим из них. Эти правила состоят в следующем.

    В столбцах векторов, входящих в базис, на пересечении строк и столбцов одноименных векторов проставляются единицы, а все остальные элементы данных столбцов полагают равными нулю.

    Элементы векторов и в строке новой симплекс-таблицы, в которой записан вектор, вводимый в базис, получают из элементов этой же строки исходной таблицы делением их на величину разрешающего элемента. В столбце в строке вводимого вектора проставляют величину , где k индекс вводимого вектора.

    Остальные элементы столбцов вектора и новой симплекс-таблицы вычисляют по правилу треугольника. Для вычисления какого-нибудь из этих элементов находят три числа:

    1) число, стоящее в исходной симплекс-таблице на месте искомого элемента новой симплекс-таблицы;

    2) число, стоящее в исходной симплекс-таблице на пересечении строки, в которой находится искомый элемент новой симплекс-таблицы, и столбца, соответствующего вектору, вводимому в базис;

    3) число, стоящее в новой симплекс-таблице на пересечении столбца, в котором стоит искомый элемент, и строки вновь вводимого в базис вектора (как отмечено выше, эта строка получается из строки исходной симплекс-таблицы делением ее элементов на разрешающий элемент).

    Эти три числа образуют своеобразный треугольник, две вершины которого соответствуют числам, находящимся в исходной симплекс-таблице, а третья – числу, находящемуся в новой симплекс-таблице. Для определения искомого элемента новой симплекс-таблицы из первого числа вычитают произведение второго и третьего.

    После заполнения новой симплекс-таблицы просматривают элементы -й строки. Если все , то новый опорный план является оптимальным. Если же среди указанных чисел имеются отрицательные, то, используя описанную выше последовательность действий, находят новый опорный план. Этот процесс продолжают до тех пор, пока либо не получают оптимальный план задачи, либо не устанавливают ее неразрешимость.

    При нахождении решения задачи линейного программирования мы предполагали, что эта задача имеет опорные планы и каждый такой план является невырожденным. Если же задача имеет вырожденные опорные планы, то на одной из итераций одна или несколько переменных опорного плана могут оказаться равными нулю. Таким образом, при переходе от одного опорного плана к другому значение функции может остаться прежним. Более того, возможен случай, когда функция сохраняет свое значение в течение нескольких итераций, а также возможен возврат к первоначальному базису. В последнем случае обычно говорят, что произошло зацикливание. Однако при решении практических задач этот случай встречается очень редко, поэтому мы на нем останавливаться не будем.

    Итак, нахождение оптимального плана симплексным методом включает следующие этапы:

    1. Находят опорный план.

    2. Составляют симплекс-таблицу.

    3. Выясняют, имеется ли хотя бы одно отрицательное число . Если нет, то найденный опорный план оптимален. Если же среди чисел имеются отрицательные, то либо устанавливают неразрешимость задачи, либо переходят к новому опорному плану.

    4. Находят направляющие столбец и строку. Направляющий столбец определяется наибольшим по абсолютной величине отрицательным числом , а направляющая строка – минимальным из отношений компонент столбца вектора к положительным компонентам направляющего столбца.

    5. По формулам (25) – (28) определяют положительные компоненты нового опорного плана, коэффициенты разложения векторов Pj по векторам нового базиса и числа , . Все эти числа записываются в новой симплекс-таблице.

    6. Проверяют найденный опорный план на оптимальность. Если план не оптимален и необходимо перейти к новому опорному плану, то возвращаются к этапу 4, а в случае получения оптимального плана или установления неразрешимости процесс решения задачи заканчивают.

    Пример 9.

    Для изготовления различных изделий А , В и С предприятие использует три различных вида сырья. Нормы расхода сырья на производство одного изделия каждого вида, цена одного изделия А , В и С , а также общее количество сырья каждого вида, которое может быть использовано предприятием, приведены в табл. 5.

    Таблица 5

    Вид сырья

    Нормы затрат сырья (кг) на одно изделие

    Общее количество сырья (кг)

    Цена одного изделия (руб.)

    Изделия А , В и С могут производиться в любых соотношениях (сбыт обеспечен), но производство ограничено выделенным предприятию сырьем каждого вида.

    Составить план производства изделий, при котором общая стоимость всей произведенной предприятием продукции является максимальной.

    Решение. Составим математическую модель задачи. Искомый выпуск изделий А обозначим через x 1 , изделий В – через , изделий С – через . Поскольку имеются ограничения на выделенный предприятию фонд сырья каждого вида, переменные должны удовлетворять следующей системе неравенств:

    (29)

    Общая стоимость произведенной предприятием продукции при условии выпуска x 1 изделий А , изделий В и изделий С составляет

    По своему экономическому содержанию переменные могут принимать только лишь неотрицательные значения:

    Таким образом, приходим к следующей математической задаче: среди всех неотрицательных решений системы неравенств (29) требуется найти такое, при котором функция (30) принимает максимальное значение.

    Запишем эту задачу в форме основной задачи линейного программирования. Для этого перейдем от ограничений-неравенств к ограничениям-равенствам. Введем три дополнительные переменные, в результате чего ограничения запишутся в виде системы уравнений

    Эти дополнительные переменные по экономическому смыслу означают не используемое при данном плане производства количество сырья того или иного вида. Например, это неиспользуемое количество сырья I вида.

    Преобразованную систему уравнений запишем в векторной форме:

    Поскольку среди векторов имеются три единичных вектора, для данной задачи можно непосредственно записать опорный план. Таковым является план Х =(0; 0; 0; 360; 192; 180), определяемый системой трехмерных единичных векторов которые образуют базис трехмерного векторного пространства.

    Составляем симплексную таблицу для I итерации (табл. 6), подсчитываем значения и проверяем исходный опорный план на оптимальность:

    Для векторов базиса

    Таблица 6

    р 5

    Как видно из таблицы 6, значения всех основных переменных равны нулю, а дополнительные переменные принимают свои значения в соответствии с ограничениями задачи. Эти значения переменных отвечают такому “плану”, при котором ничего не производится, сырье не используется и значение целевой функции равно нулю (т. е. стоимость произведенной продукции отсутствует). Этот план, конечно, не является оптимальным.

    Это видно и из 4-й строки табл. 6, так как в ней имеется три отрицательных числа: и Отрицательные числа не только свидетельствуют о возможности увеличения общей стоимости производимой продукции, но и показывают, на сколько увеличится эта сумма при введении в план единицы того или другого вида продукции.

    Так, число – 9 означает, что при включении в план производства одного изделия А обеспечивается увеличение выпуска продукции на 9 руб. Если включить в план производства по одному изделию В и С, то общая стоимость изготовляемой продукции возрастет соответственно на 10 и 16 руб. Поэтому с экономической точки зрения наиболее целесообразным является включение в план производства изделий С. Это же необходимо сделать и на основании формального признака симплексного метода, поскольку максимальное по абсолютной величине отрицательное число стоит в 4-й строке столбца вектора Р 3 . Следовательно, в базис введем вектор Р 3 . определяем вектор, подлежащий исключению из базиса. Для этого находим

    Найдя число мы тем самым с экономической точки зрения определили, какое количество изделий С предприятие может изготовлять с учетом норм расхода и имеющихся объемов сырья каждого вида. Так как сырья данного вида соответственно имеется 360, 192 и 180 кг, а на одно изделие С требуется затратить сырья каждого вида соответственно 12, 8 и 3 кг, то максимальное число изделий С , которое может быть изготовлено предприятием, равно т. е. ограничивающим фактором для производства изделий С является имеющийся объем сырья II вида. С учетом его наличия предприятие может изготовить 24 изделия С. При этом сырье II вида будет полностью использовано.

    Следовательно, вектор Р 5 подлежит исключению из базиса. Столбец вектора Р 3 к 2-я строка являются направляющими. Составляем таблицу для II итерации (табл. 7).

    Таблица 7

    P 4

    p 3

    Сначала заполняем строку вектора, вновь введенного в базис, т. е. строку, номер которой совпадает с номером направляющей строки. Здесь направляющей является 2-я строка. Элементы этой строки табл. 7 получаются из соответствующих элементов таблицы 6 делением их на разрешающий элемент (т. е. на 8). При этом в столбце С б записываем коэффициент , стоящий в столбце вводимого в базис вектора . Затем заполняем элементы столбцов для векторов, входящих в новый базис. В этих столбцах на пересечении строк и столбцов одноименных векторов проставляем единицы, а все остальные элементы полагаем равными нулю.

    Для определения остальных элементов табл. 7 применяем правило треугольника. Эти элементы могут быть вычислены и непосредственно по рекуррентным формулам.

    Вычислим элементы табл. 7, стоящие в столбце вектора Р 0 . Первый из них находится в 1-й строке этого столбца. Для его вычисления находим три числа:

    1) число, стоящее в табл. 6 на пересечении столбца вектора Р 0 и 1-й строки (360);

    2) число, стоящее в табл. 6 на пересечении столбца вектора P 3 и 1-й строки (12);

    3) число, стоящее в табл. 7 на пересечении столбца вектора Р 0 и 2-й строки (24).

    Вычитая из первого числа произведение двух других, находим искомый элемент: 360 – 12 х 24=72; записываем его в 1-й строке столбца вектора Р 0 табл. 7.

    Второй элемент столбца вектора Р 0 табл. 7 был уже вычислен ранее. Для вычисления третьего элемента столбца вектора Р 0 также находим три числа. Первое из них (180) находится на пересечении 3-й строки и столбца вектора Р 0 табл. 6, второе (3) – на пересечении 3-й строки и столбца вектора P 3 табл. 6, третье (24) – на пересечении 2-й строки и столбца вектора Р 0 табл. 8. Итак, указанный элемент есть 180 – 24 х 3=108. Число 108 записываем в 3-й строке столбца вектора Р 0 табл. 7.

    Значение F 0 в 4-й строке столбца этого же вектора можно найти двумя способами:

    1) по формуле , т.е.

    2) по правилу треугольника; в данном случае треугольник образован числами 0, -16, 24. Этот способ приводит к тому же результату: 0 - (-16) х 24=384.

    При определении по правилу треугольника элементов столбца вектора Р 0 третье число, стоящее в нижней вершине треугольника, все время оставалось неизменным и менялись лишь первые два числа. Учтем это при нахождении элементов столбца вектора P 1 табл. 7. Для вычисления указанных элементов первые два числа берем из столбцов векторов P 1 и Р 3 табл. 6, а третье число – из табл. 7. Это число стоит на пересечении 2-й строки и столбца вектора P 1 последней таблицы. В результате получаем значения искомых элементов: 18 – 12 х (3/4) =9; 5 – 3 х (3/4) = 11/4.

    Число в 4-й строке столбца вектора P 1 табл. 7 можно найти двумя способами:

    1) по формуле Z 1 -С 1 =(C,P 1)-C 1 имеем

    2) по правилу треугольника получим

    Аналогично находим элементы столбца вектора P 2 .

    Элементы столбца вектора Р 5 вычисляем по правилу треугольника. Однако построенные для определения этих элементов треугольники выглядят иначе.

    При вычислении элемента 1-й строки указанного столбца получается треугольник, образованный числами 0,12 и 1/8. Следовательно, искомый элемент равен 0 – 12х (1/8) = -3/2. Элемент, стоящий в 3-й строке данного столбца, равен 0 - 3 х (1 /8) = -3/8.

    По окончании расчета всех элементов табл. 7 в ней получены новый опорный план и коэффициенты разложения векторов через базисные векторы P 4 , P 3 , P 6 и значения и . Как видно из этой таблицы, новым опорным планом задачи является план X =(0; 0; 24; 72; 0; 108). При данном плане производства изготовляется 24 изделия С и остается неиспользованным 72 кг сырья 1 вида и 108 кг сырья III вида. Стоимость всей производимой при этом плане продукции равна 384 руб. Указанные числа записаны в столбце вектора Р 0 табл. 7. Как видно, данные этого столбца по-прежнему представляют собой параметры рассматриваемой задачи, хотя они претерпели значительные изменения. Изменились данные и других столбцов, а их экономическое содержание стало более сложным. Так, например, возьмем данные столбца вектора Р 2 . Число 1/2 во 2-й строке этого столбца показывает, на сколько следует уменьшить изготовление изделий С , если запланировать выпуск одного изделия В. Числа 9 и 3/2 в 1-й и 3-й строках вектора P 2 показывают соответственно, сколько потребуется сырья I и II вида при включении в план производства одного изделия В , а число – 2 в 4-й строке показывает, что если будет запланирован выпуск одного изделия В , то это обеспечит увеличение выпуска продукции в стоимостном выражении на 2 руб. Иными словами, если включить в план производства продукции одно изделие В , то это потребует уменьшения выпуска изделия С на 1/2 ед. и потребует дополнительных затрат 9 кг сырья I вида и 3/2 кг сырья III вида, а общая стоимость изготовляемой продукции в соответствии с новым оптимальным планом возрастет на 2 руб. Таким образом, числа 9 и 3/2 выступают как бы новыми “нормами” затрат сырья I и III вида на изготовление одного изделия В (как видно из табл. 6, ранее они были равны 15 и 3), что объясняется уменьшением выпуска изделий С.

    Такой же экономический смысл имеют и данные столбца вектора Р 1 табл. 7. Несколько иное экономическое содержание имеют числа, записанные в столбце вектора Р 5 . Число 1/8 во 2-й строке этого столбца, показывает, что увеличение объемов сырья II вида на 1 кг позволило бы увеличить выпуск изделий С на 1/8 ед. Одновременно потребовалось бы дополнительно 3/2 кг сырья I вида и 3/8 кг сырья III вида. Увеличение выпуска изделий С на 1/8 ед. приведет к росту выпуска продукции на 2 руб.

    Из изложенного выше экономического содержания данных табл. 7 следует, что найденный на II итерации план задачи не является оптимальным. Это видно и из 4-й строки табл. 7, поскольку в столбце вектора P 2 этой строки стоит отрицательное число – 2. Значит, в базис следует ввести вектор P 2 , т. е. в новом плане следует предусмотреть выпуск изделий В. При определении возможного числа изготовления изделий В следует учитывать имеющееся количество сырья каждого вида, а именно: возможный выпуск изделий В определяется для , т. е. находим

    Следовательно, исключению из базиса подлежит вектор Р 4 иными словами, выпуск изделий В ограничен имеющимся в распоряжении предприятия сырьем I вида. С учетом имеющихся объемов этого сырья предприятию следует изготовить 8 изделий В. Число 9 является разрешающим элементом, а столбец вектора P 2 и 1-я строка табл. 7 являются направляющими. Составляем таблицу для III итерации (табл. 8).

    Таблица 8

    P 2

    P 3

    В табл. 8 сначала заполняем элементы 1-й строки, которая представляет собой строку вновь вводимого в базис вектора Р 2 . Элементы этой строки получаем из элементов 1-й строки табл. 7 делением последних на разрешающий элемент (т.е. на 9). При этом в столбце С б данной строки записываем .

    Затем заполняем элементы столбцов векторов базиса и по правилу треугольника вычисляем элементы остальных столбцов. В результате в табл. 8 получаем новый опорный план X =(0; 8; 20; 0; 0; 96) и коэффициенты разложения векторов через базисные векторы и соответствующие значения и

    Проверяем, является ли данный опорный план оптимальным или нет. Для этого рассмотрим 4-ю строку, табл. 8. В этой строке среди чисел нет отрицательных. Это означает, что найденный опорный план является оптимальным и

    Следовательно, план выпуска продукции, включающий изготовление 8 изделий В и 20 изделий С , является оптимальным. При данном плане выпуска изделий полностью используется сырье I и II видов и остается неиспользованным 96 кг сырья III вида, а стоимость производимой продукции равна 400 руб.

    Оптимальным планом производства продукции не предусматривается изготовление изделий А. Введение в план выпуска продукции изделий вида А привело бы к уменьшению указанной общей стоимости. Это видно из 4-й строки столбца вектора P 1 , где число 5 показывает, что при данном плане включение в него выпуска единицы изделия А приводит лишь к уменьшению общей величины стоимости на 5 руб.

    Решение данного примера симплексным методом можно было бы проводить, используя лишь одну таблицу (табл. 9). В этой таблице последовательно записаны одна за другой все три итерации вычислительного процесса.

    Таблица 9

    р 5

    P 4

    p 3

    P 2

    p 3

    Как видно из табл. 10, исходный опорный план не является оптимальным. Поэтому переходим к новому опорному плану. Это можно сделать, так как в столбцах векторов P 1 и p 5 , 4-я строка которых содержит отрицательные числа, имеются положительные элементы. Для перехода к новому опорному плану введем в базис вектор p 5 и исключим из базиса вектор p 4 . Составляем таблицу II итерации.

    Таблица 11

    Как видно из табл. 11, новый опорный план задачи не является оптимальным, так как в 4-й строке столбца вектора P 1 стоит отрицательное число -11/3. Поскольку в столбце этого вектора нет положительных элементов, данная задача не имеет оптимального плана.