• Аминокислотный состав белков. Сколько аминокислот входит в состав белка? Группы и виды аминокислот

    Среди органических соединений клетки белки являются наиболее важными. Содержание белков в клетке колеблется от 50 % до 80 %.

    Белки - это высокомолекулярные органические соединения, которые состоят из углерода, водорода, кислорода, серы и азота. В состав некоторых белков входит фосфор, а также катионы металлов.

    Белки являются биополимерами, которые состоят из мономеров аминокислот. Их молекулярная масса варьируется от нескольких тысяч до нескольких миллионов, в зависимости от количества аминокислотных остатков.

    В состав белков входит всего 20 типов аминокислот из 170, найденных в живых организмах.

    Аминокислоты (см. Рис. 1) - органические соединения, в молекулах которых одновременно присутствует аминогруппа () с основными свойствами и карбоксильная группа () с кислотными свойствами. Часть молекулы, называемая радикалом (R ), у разных аминокислот имеет различное строение.

    Рис. 1. Аминокислота

    В зависимости от радикала аминокислоты делят на (см. Рис. 2):

    1. кислые (в радикале карбоксильная группа);

    2. основные (в радикале аминогруппа);

    3. нейтральные (не имеют заряженных радикалов).

    Рис. 2. Классификация аминокислот

    Аминокислоты соединяются друг с другом посредством пептидной связи. Эта связь образуется путем выделения молекулы воды при взаимодействии аминогруппы одной аминокислоты с карбоксильной группой другой аминокислоты. Реакция, идущая с выделением воды, называется реакцией конденсации , а возникающая ковалентная азот-углеродная связь - пептидной связью.

    Рис. 3. Дипептид

    Соединения, образующиеся в результате конденсации двух аминокислот, представляют собой дипептид (см. Рис. 3). На одном конце его молекулы находится аминогруппа, а на другом - свободная карбоксильная группа. Благодаря этому дипептид может присоединять к себе другие молекулы. Если таким образом соединяется много аминокислот, то образуется полипептид (см. Рис. 4).

    Рис. 4. Полипептид

    Полипептидные цепи бывают очень длинными и могут состоять из различных аминокислот. В состав белковой молекулы может входить как одна полипептидная цепь, так и несколько таких цепей.

    Многие животные, включая человека, в отличие от бактерий и растений не могут синтезировать все аминокислоты, которые составляют белковые молекулы. То есть существует ряд незаменимых аминокислот, которые должны поступать с пищей.

    К незаменимым аминокислотам относятся: лизин, валин, лейцин, изолейцин, треонин, фенилаланин, триптофан, тирозин, метионин.

    Ежегодно в мире производится более двухсот тысяч тонн аминокислот, которые используются в практической деятельности человека. Они применяются в медицине, парфюмерии, косметике, сельском хозяйстве.

    В большей степени производят глутаминовую кислоту и лизин, а также глицин и метионин.

    Назначение аминокислот

    1. Глутаминовая кислота

    Используется в психиатрии (при эпилепсии, для лечения слабоумия и последствий родовых травм), в комплексной терапии язвенной болезни и при гипоксии. Также она улучшает вкус мясных продуктов.

    2. Аспарагиновая кислота

    Аспарагиновая кислота способствует повышению потребления кислорода сердечной мышцей. В кардиологии применяют панангин - препарат, содержащий аспартат калия и аспартат магния. Панангин применяют для лечения различного рода аритмий, а также ишемической болезни сердца.

    3. Метионин

    Защищает организм при отравлениях бактериальными эндотоксинами и некоторыми другими ядами, в связи с этим используется для защиты организма от токсикантов окружающей среды. Обладает радиопротекторными свойствами.

    4. Глицин

    Является медиатором торможения в центральной нервной системе. Используется как успокаивающее средство, применяется при лечении хронического алкоголизма.

    5. Лизин

    Основная пищевая и кормовая добавка. Используется в качестве антиоксидантов в пищевой промышленности (предотвращает порчу пищевых продуктов).

    Отличие между белками и пептидами заключается в количестве аминокислотных остатков. В белках их более 50, а в пептидах менее 50.

    В настоящее время выделено несколько сотен различных пептидов, которые выполняют в организме самостоятельную физиологическую роль.

    К пептидам относятся:

    1. Пептидные антибиотики (грамицидин S ).

    2. Регуляторные пептиды - вещества, регулирующие многие химические реакции в клетках и тканях организма. К ним относятся: пептидные гормоны (инсулин), окситоцин, стимулирующий сокращение гладкой мускулатуры.

    3. Нейропептиды.

    В зависимости от строения различают простые и сложные белки.

    1. Простые белки состоят только из белковой части.

    2. Сложные имеют небелковую часть.

    Если в качестве небелковой части используется углевод, то это гликопротеиды .

    Если в качестве небелковой части используются липиды, то это липопротеиды.

    Если в качестве небелковой части используются нуклеиновые кислоты, то это нуклеопротеиды .

    Белки имеют 4 основных структуры: первичную, вторичную, третичную, четвертичную (см. Рис. 5).

    Рис. 5. Структура белка

    1. Под первичной структурой понимают последовательность аминокислотных остатков в полипептидной цепи. Она уникальна для любого белка и определяет его форму, свойства и функции.

    Значительное совпадение первичной структуры характерно для белков, выполняющих сходные функции. Замена всего лишь одной аминокислоты в одной из цепей может изменить функцию молекулы белка. Например, замена глутаминовой кислоты на валин приводит к образованию аномального гемоглобина и к заболеванию, которое называется серповидноклеточная анемия.

    2. Вторичная структура - упорядоченное свертывание полипептидной цепи в спираль (имеет вид растянутой пружины). Витки спирали укрепляются водородными связями, возникающими между карбоксильными группами и аминогруппами. Практически все СО- и NН-группы принимают участие в образовании водородных связей.

    3. Третичная структура - укладка полипептидных цепей в глобулы, возникающая в результате возникновения химических связей (водородных, ионных, дисульфидных) и установления гидрофобных взаимодействий между радикалами аминокислотных остатков.

    4. Четвертичная структура характерна для сложных белков, молекулы которых образованы двумя и более глобулами.

    Утрата белковой молекулой своей природной структуры называется денатурацией . Она может возникнуть при воздействии температуры, химических веществ, при нагревании и облучении.

    Если при денатурации не нарушены первичные структуры, то при восстановлении нормальных условий белок способен воссоздать свою структуру. Этот процесс носит название ренатурация (см. Рис. 6). Следовательно, все особенности строения белка определяются первичной структурой.

    Рис. 6. Денатурация и ренатурация

    Серповидноклеточная анемия - это наследственная болезнь, при которой эритроциты, участвующие в переносе кислорода, выглядят не в виде диска, а принимают форму серпа (см. Рис. 7). Непосредственной причиной изменения формы является небольшое изменение химической структуры гемоглобина (основного компонента эритроцита).

    Рис. 7. Внешний вид нормального и серповидного эритроцита

    Симптомы: потеря трудоспособности, постоянная отдышка, учащенное сердцебиение, пониженный иммунитет.

    Одним из признаков серповидноклеточной анемии является желтизна кожных покровов.

    Существуют различные формы заболевания. В самой тяжелой форме у человека происходит задержка развития, такие люди не доживают до подросткового возраста.

    Список литературы

    1. Каменский А.А., Криксунов Е.А., Пасечник В.В. Общая биология 10-11 класс Дрофа, 2005.
    2. Биология. 10 класс. Общая биология. Базовый уровень / П.В. Ижевский, О.А. Корнилова, Т.Е. Лощилина и др. - 2-е изд., переработанное. - Вентана-Граф, 2010. - 224 стр.
    3. Беляев Д.К. Биология 10-11 класс. Общая биология. Базовый уровень. - 11-е изд., стереотип. - М.: Просвещение, 2012. - 304 с.
    4. Агафонова И.Б., Захарова Е.Т., Сивоглазов В.И. Биология 10-11 класс. Общая биология. Базовый уровень. - 6-е изд., доп. - Дрофа, 2010. - 384 с.
    1. Vmede.org ().
    2. Youtube.com ().
    3. Bio-faq.ru ().

    Домашнее задание

    1. Вопросы 1-6 в конце параграфа 11 (стр. 46) - Каменский А.А., Криксунов Е.А., Пасечник В.В. «Общая биология», 10-11 класс ()
    2. Какие функциональные группы входят в состав аминокислот?
  • 3. Роль активного центра в ферментативном катализе
  • 1. Кислотно-основной катализ
  • 2. Ковалентный катализ
  • 15. Кинетика ферментативных реакций. Зависимость скорости ферментативных реакций от температуры, рН среды, концентрации фермента и субстрата. Уравнение Михаэлиса-Ментен, Кm.
  • 16. Кофакторы ферментов: ионы металлов их роль в ферментативном катализе. Коферменты как производные витаминов. Коферментные функции витаминов в6, рр и в2 на примере трансаминаз и дегидрогеназ.
  • 1. Роль металлов в присоединении субстрата в активном центре фермента
  • 2. Роль металлов в стабилизации третичной и четвертичной структуры фермента
  • 3. Роль металлов в ферментативном катализе
  • 4. Роль металлов в регуляции активности ферментов
  • 1. Механизм "пинг-понг"
  • 2. Последовательный механизм
  • 17. Ингибирование ферментов: обратимое и необратимое; конкурентное и неконкурентное. Лекарственные препараты как ингибиторы ферментов.
  • 1. Конкурентное ингибирование
  • 2. Неконкурентное ингибирование
  • 1. Специфические и неспецифические ингибиторы
  • 2. Необратимые ингибиторы ферментов как лекарственные препараты
  • 19. Регуляция каталитической активности ферментов ковалентной модификацией путем фосфорилирования и дефосфорилирования (на примере ферментов синтеза и распада гликогена).
  • 20. Ассоциация и диссоциация протомеров на примере протеинкиназы а и ограниченный протеолиз при активации протеолитических ферментов как способы регуляции каталитической активности ферментов.
  • 21. Изоферменты, их происхождение, биологическое значение, привести примеры. Определение ферментов и изоферментного спектра плазмы крови с целью диагностики болезней.
  • 22. Энзимопатии наследственные (фенилкетонурия) и приобретенные (цинга). Применение ферментов для лечения болезней.
  • 23. Общая схема синтеза и распада пиримидиновых нуклеотидов. Регуляция. Оротацидурия.
  • 24. Общая схема синтеза и распада пуриновых нуклеотидов. Регуляция. Подагра.
  • 27. Азотистые основания, входящие в структуру нуклеиновых кислот – пуриновые и пиримидиновые. Нуклеотиды, содержащие рибозу и дезоксирибозу. Структура. Номенклатура.
  • 27. Гибридизация нуклеиновых кислот. Денатурация и ренативация днк. Гибридизация (днк-днк, днк-рнк). Методы лабораторной диагностики, основанные на гибридизации нуклеиновых кислот.(пцр)
  • 29. Репликация. Принципы репликации днк. Стадии репликации. Инициация. Белки и ферменты, принимающие участие в формировании репликативной вилки.
  • 30. Элонгация и терминация репликации. Ферменты. Асимметричный синтез днк. Фрагменты Оказаки. Роль днк-лигазы в формировании непрерывной и отстающей цепи.
  • 31. Повреждения и репарация днк. Виды повреждений. Способы репарации. Дефекты репарационных систем и наследственные болезни.
  • 32. Транскрипция Характеристика компонентов системы синтеза рнк. Структура днк-зависимой рнк-полимеразы: роль субъединиц (α2ββ′δ). Инициация процесса. Элонгация, терминация транскрипции.
  • 33. Первичный транскрипт и его процессинг. Рибозимы как пример каталитической активности нуклеиновых кислот. Биороль.
  • 35. Сборка полипептидной цепи на рибосоме. Образование инициаторного комплекса. Элонгация: образование пептидной связи (реакция транспептидации). Транслокация. Транслоказа. Терминация.
  • 1. Инициация
  • 2. Элонгация
  • 3. Терминация
  • 36. Особенности синтеза и процессинга секретируемых белков (на примере коллагена и инсулина).
  • 37. Биохимия питания. Основные компоненты пищи человека, их биороль, суточная потребность в них. Незаменимые компоненты пищи.
  • 38. Белковое питание. Биологическая ценность белков. Азотистый баланс. Полноценность белкового питания, нормы белка в питании, белковая недостаточность.
  • 39. Переваривание белков: протеазы жкт, их активация и специфичность, оптимум рН и результат действия. Образование и роль соляной кислоты в желудке. Защита клеток от действия протеаз.
  • 1. Образование и роль соляной кислоты
  • 2.Механизм активации пепсина
  • 3.Возрастные особенности переваривания белков в желудке
  • 1. Активация панкреатических ферментов
  • 2. Специфичность действия протеаз
  • 41. Витамины. Классификация, номенклатура. Провитамины. Гипо-, гипер- и авитаминозы, причины возникновения. Витаминзависимые и витаминрезистентные состояния.
  • 42. Минеральные вещества пищи, макро- и микроэлементы, биологическая роль. Региональные патологии, связанные с недостатком микроэлементов.
  • 3. Жидкостностъ мембран
  • 1. Структура и свойства липидов мембран
  • 45. Механизмы переноса веществ через мембраны: простая диффузия, пассивный симпорт и антипорт, активный транспорт, регулируемые каналы. Мембранные рецепторы.
  • 1. Первично-активный транспорт
  • 2. Вторично-активный транспорт
  • Мембранные рецепторы
  • 3.Эндергонические и экзергонические реакции
  • 4. Сопряжение экзергонических и эндергонических процессов в организме
  • 2. Строение атф-синтазы и синтез атф
  • 3.Коэффициент окислительного фосфорилирования
  • 4.Дыхательный контроль
  • 50. Образование активных форм кислорода (синглетный кислород, пероксид водорода, гидроксильный радикал, пероксинитрил). Место образования, схемы реакций, их физиологическая роль.
  • 51. . Механизм повреждающего действия активных форм кислорода на клетки (пол, окисление белков и нуклеиновых кислот). Примеры реакций.
  • 1) Инициация: образование свободного радикала (l )
  • 2) Развитие цепи:
  • 3) Разрушение структуры липидов
  • 1. Строение пируватдегидрогеназного комплекса
  • 3. Связь окислительного декарбоксилирования пирувата с цпэ
  • 53.Цикл лимонной кислоты: последовательность реакций и характеристика ферментов. Роль цикла в метаболизме.
  • 1. Последовательность реакций цитратного цикла
  • 54. Цикл лимонной кислоты, схема процесса. Связь цикла с целью переноса электронов и протонов. Регуляция цикла лимонной кислоты. Анаболические и анаплеротические функции цитратного цикла.
  • 55. Основные углеводы животных, биологическая роль. Углеводы пищи, переваривание углеводов. Всасывание продуктов переваривания.
  • Методы определение глюкозы в крови
  • 57. Аэробный гликолиз. Последовательность реакций до образования пирувата (аэробный гликолиз). Физиологическое значение аэробного гликолиза. Использование глюкозы для синтеза жиров.
  • 1. Этапы аэробного гликолиза
  • 58. Анаэробный гликолиз. Реакция гликолитической оксидоредукции; субстратное фосфорилирование. Распространение и физиологическое значение анаэробного распада глюкозы.
  • 1. Реакции анаэробного гликолиза
  • 59. Гликоген, биологическое значение. Биосинтез и мобилизация гликогена. Регуляция синтеза и распада гликогена.
  • 61. Наследственные нарушения обмена моносахаридов и дисахаридов: галактоземия, непереносимость фруктозы и дисахаридов. Гликогенозы и агликогенозы.
  • 2. Агликогенозы
  • 62. Липиды. Общая характеристика. Биологическая роль. Классификация липидов.Высшие жирные кислоты, особенности строения. Полиеновые жирные кислоты. Триацилглицеролы..
  • 64. Депонирование и мобилизация жиров в жировой ткани, физиологическая роль этих процессов. Роль инсулина, адреналина и глюкагона в регуляции метаболизма жира.
  • 66. Распад жирных кислот в клетке. Активация и перенос жирных кислот в митохондрии. Β-окисление жирных кислот, энергетический эффект.
  • 67. Биосинтез жирных кислот. Основные стадии процесса. Регуляция обмена жирных кислот.
  • 2. Регуляция синтеза жирных кислот
  • 69. Холестерин. Пути поступления, использования и выведения из организма. Уровень холестерина в сыворотке крови. Биосинтез холестерина, его этапы. Регуляция синтеза.
  • Фонд холестерола в организме, пути его использования и выведения.
  • 1. Механизм реакции
  • 2. Органоспецифичные аминотрансферазы ант и act
  • 3. Биологическое значение трансаминирования
  • 4. Диагностическое значение определения аминотрансфераз в клинической практике
  • 1. Окислительное дезаминирование
  • 74. Непрямое дезаминирование аминокислот. Схема процесса, субстраты, ферменты, кофакторы.
  • 3. Неокислительное дезамитровате
  • 76. Оринитиновый цикл мочевинообразования. Химизм, место протекания процесса. Энергетический эффект процесса, его регуляция. Количественное определение мочевины сыворотки крови, клиническое значение.
  • 2. Образование спермидина и спермина, их биологическая роль
  • 78. Обмен фенилаланина и тирозина. Особенности обмена тирозина в разных тканях.
  • 79. Эндокринная, паракринная и аутокринная системы межклеточной коммуникации. Роль гормонов в системе регуляции метаболизма. Регуляция синтеза гормонов по принципу обратной связи.
  • 80. Классификация гормонов по химическому строению и биологическим функция.
  • 1. Классификация гормонов по химическому строению
  • 2. Классификация гормонов по биологическим функциям
  • 1. Общая характеристика рецепторов
  • 2. Регуляция количества и активности рецепторов
  • 82. Циклические амф и гмф как вторичные посредники. Активация протеинкиназ и фосфорилирование белков, ответственных за проявление гормонального эффекта.
  • 3. Передача сигналов через рецепторы, сопряжённые с ионными каналами
  • 85. Гормоны гипоталамуса и передней доли гипофиза, химическая природа и биологическая роль.
  • 2. Кортиколиберин
  • 3. Гонадолиберин
  • 4. Соматолиберин
  • 5.Соматостатин
  • 1. Гормон роста, пролактин
  • 2. Тиреотропин, лютеинизирующий гормон и фолликулостимулирующий гормон
  • 3. Группа гормонов, образующихся из проопиомеланокортина
  • 4. Гормоны задней доли гипофиза
  • 86. Регуляция водно-солевого обмена. Строение, механизмдействия и функции альдостерона и вазопрессина. Роль системы ренин-ангиотензин-альдостерон. Предсердный натриуретический фактор.
  • 1. Синтез и секреция антидиуретического гормона
  • 2. Механизм действия
  • 3. Несахарный диабет
  • 1. Механизм действия альдостерона
  • 2. Роль системы ренин-ангиотензин- альдостерон в регуляции водно-солевого обмена
  • 3. Восстановление объёма крови при обезвоживании организма
  • 4. Гиперальдостеронтм
  • 87. Регуляция обмена ионов кальция и фосфатов. Строение, биосинтез и механизм действия паратгормона, кальцитонина и кальцитриола.Причины и проявления рахита, гипо- и гиперпаратиреоидизма.
  • 1. Синтез и секреция птг
  • 2. Роль паратгормона в регуляции обмена кальция и фосфатов
  • 3. Гиперпаратиреоз
  • 4. Гипопаратиреоз
  • 1. Строение и синтез кальцитриола
  • 2. Механизм действия кальцитриола
  • 3. Рахит
  • 2. Биологические функции инсулина
  • 3. Механизм действия инсулина
  • 1. Инсулинзависимый сахарный диабет
  • 2. Инсулинонезависимый сахарный диабет
  • 1. Симптомы сахарного диабета
  • 2. Острые осложнения сахарного диабета. Механизмы развития диабетической комы
  • 3. Поздние осложнения сахарного диабета
  • 1. Биосинтез йодтиронинов
  • 2. Регуляция синтеза и секреции йодтиронинов
  • 3. Механизм действия и биологические функции йодтиронинов
  • 4. Заболевания щитовидной железы
  • 90. Гормоны коры надпочечников (кортикостероиды). Их влияние на метаболизм клетки. Изменения метаболизма при гипо- и гиперфункции коры надпочечников.
  • 3. Изменения метаболизма при гипо- и гиперфункции коры надпочечников
  • 91. Гормоны мозгового слоя надпочечников. Секреция катехоламинов. Механизм действия и биологические функции катехоламинов. Патология мозгового вещества надпочечников.
  • 1. Синтез и секреция катехоламинов
  • 2. Механизм действия и биологические функции катехоламинов
  • 3. Патология мозгового вещества надпочечников
  • 1. Основные ферменты микросомальных электронтранспортных цепей
  • 2. Функционирование цитохрома р450
  • 3. Свойства системы микросомального окисления
  • 93.Распад гема. Схема процесса, место протекания. «Прямой» и «непрямой» билирубин, его обезвреживание в печени.Диагностическое значение определения билирубина в крови и моче.
  • 94. . Нарушения катаболизма гема. Желтухи: гемолитическая, желтуха новорожденных, печеночно-клеточная, механическая, наследственная (нарушения синтеза удф-глюкуронилтрансферазы).
  • 1. Гемолитическая (надпечёночная) желтуха
  • 2. Печёночно-клеточная (печёночная) желтуха
  • 3. Механическая, или обтурационная (подпечёночная) желтуха
  • 1. Участие трансфераз в реакциях конъюгации
  • 2. Роль эпоксидгидролаз в образовании диолов
  • 96. Гемоглобины человека, структура. Транспорт кислорода и диоксида углерода. Гемоглобин плода и его физиологическое значение. Гемоглобинопатии.
  • 98. Белки сыворотки крови, биологическая роль основных фракций белков, значение их определения для диагностики заболеваний. Содержание и функции некоторых белков плазмы крови
  • 98. Ферменты плазмы крови, энзимодиагностика. Количественное определение активности аминотрансфераз (АлАт, АсАт).
  • Аминотрансферазы
  • Аланинаминотрансфераза (алат)
  • 99. Коллаген: особенности аминокислотного состава, первичной и пространственной структуры. Особенности биосинтеза и созревания коллагена. Роль аскорбиновой кислоты в созревании коллагена.
  • 104. Значение воды для жизнедеятельности организма. Распределение воды в тканях, понятие о внутриклеточной и внеклеточной жидкостях. Водный баланс, регуляция водного обмена.
  • 1.Предмет и задачи биологической химии. Биохимия как молекулярный уровень изучения структурной организации, анаболизма и катаболизма живой материи. Место биохимии среди других биологических дисциплин. Значение биохимии в подготовке врача и для медицины.

    Биохимия – это наука о химическом составе живой материи, химических процессах, происходящих в живых организмах, а также связи этих превращений с деятельностью органов и тканей. Таким образом, биохимия состоит как бы из трех частей: 1) статическая биохимия (это анализ химического состава живых организмов); 2) динамическая биохимия (изучает совокупность превращения веществ и энергии в организме); 3) функциональная биохимия (исследует процессы, лежащие в основе различных проявлений жизнедеятельности).

    Главным для биохимии является выяснение функционального, то есть биологического назначения всех химических веществ и физико-химических процессов в живом организме, а также механизм нарушения этих функций при разных заболеваниях. Современная биохимия решает следующие задачи : 1. Биотехнологическую, т.е. создание фармацевтических препаратов (гормонов, ферментов), регуляторов роста растений, средств борьбы с вредителями, пищевых добавок. 2. Проводит разработку новых методов и средств диагностики и лечения наследственных заболеваний, канцерогенеза, природы онкогенов и онкобелков. 3. Проводит разработку методов генной и клеточной инженерии для получения принципиально новых пород животных и форм растений с более ценными признаками. 4. Изучает молекулярные основы памяти, психики, биоэнергетики, питания и целый ряд других задач.

    Биологическая химия изучает молекулярные процессы, лежащие в основе разви­тия и функционирования организмов. Биохимия использует методы «молекуляр­ных» наук - химии, физической химии, молекулярной физики, и в этом отноше­нии биохимия сама является молекулярной наукой. Однако главные конечные задачи биохимии лежат в области биологии: она изучает закономерности биоло­гической, а не химической формы движения материи. С другой стороны, «молекулярные изобретения» природы, открываемые биохимиками, находят приме­нение в небиологических отраслях знания и в промышленности (молекулярная бионика, биотехнология). В таких случаях биохимия выступает в роли метода, а предметом исследований и разработок являются проблемы, выходящие за пре­делы биологии.

    Живые организмы находятся в постоянной и неразрывной связи с окружающей средой. Эта связь осуществляется в процессе обмена веществ. Обмен веществ включает 3 этапа: поступление веществ в организм, метаболизм и выделение конечных продуктов из организма.

    Поступление веществ в организм происходит в результате дыхания (кислород) и питания. В ЖКТ продукты питания перевариваются (расщепляются до простых веществ). При переваривании происходит гидролиз полимеров (белков, полисахаридов и других сложных органических веществ) до мономеров, всасывающихся в кровь и включающихся в промежуточный обмен.

    Промежуточный обмен (внутриклеточный метаболизм) включает 2 типа реакций: катаболизм и анаболизм.

    Катаболизм - процесс расщепления органических молекул до конечных продуктов. Конечные продукты превращений органических веществ у животных и человека - СО 2 , Н 2 О и мочевина. В процессы катаболизма включаются метаболиты, образующиеся как при пищеварении, так и при распаде структурно-функциональных компонентов клеток.

    Реакции катаболизма сопровождаются выделением энергии (экзергонические реакции).

    Анаболизм объединяет биосинтетические процессы, в которых простые строительные блоки соединяются в сложные макромолекулы, необходимые для организма. В анаболических реакциях используется энергия, освобождающаяся при катаболизме (эндергонические реакции).

    Практически любое заболевание начинается с по­вреждения (нарушения) одной реакции в метабо­лизме клетки, а затем оно распространяется на ткань, орган и целый организм. Нарушение метабо­лизма ведет к нарушению гомеостаза в биологичес­ких жидкостях организма человека, что сопровож­дается изменением биохимических показателей.

    Большое значение клинико-биохимических методов исследования био­логических жидкостей велико в медицине и важно для подготовки медицинских лаборатор­ных техников. Достаточно напомнить, что только в крови человека можно определить современными методами биохимических исследований около 1000 показателей метаболизма.

    Биохимические показа­тели биологических сред организма человека широко используются при:

    1. постановке диагноза заболевания, особенно дифференциального диагноза;

    2. выборе метода лечения;

    3.контроле за правильностью назначенного ле­чения;

    4.результаты биохимических анализов служат одним из критериев излеченности патологическо­го процесса;

    5.скрининге (выявлении болезни на доклини­ческой стадии);

    6.мониторинге (контроле за течением заболе­вания и результатом лечения);

    7. прогнозе (информации о возможном исходе заболевания).

    2. Аминокислоты, входящие в состав белков, их строение и свойства. Пептиды.

    Биологическая роль аминокислот и пептидов.

    1. Общие структурные особенности аминокислот, входящих в состав белков

    Общая структурная особенность аминокислот - наличие амино- и карбоксильной групп, соединённых с одним и тем же?-углеродным атомом. R - радикал аминокислот - в простейшем случае представлен атомом водорода (глицин), но может иметь и более сложное строение. В водных растворах при нейтральном значении рН?- аминокислоты существуют в виде биполярных ионов. В отличие от 19 остальных?-аминокислот, пролин - иминокислота, радикал которой связан как с?-углеродным атомом, так и с аминогруппой, в результате чего молекула приобретает циклическую структуру.

    19 из 20 аминокислот содержат в?-положении асимметричный атом углерода, с которым связаны 4 разные замещающие группы. В результате эти аминокислоты в природе могут находиться в двух разных изомерных формах - L и D. Исключение составляет глицин, который не имеет асимметричного?-углеродного атома, так как его радикал представлен только атомом водорода. В составе белков присутствуют только L-изомеры аминокислот.

    Чистые L- или D-стереоизомеры могут за длительный срок самопроизвольно и неферментативно превращаться в эквимолярную смесь L- и D-изомеров. Этот процесс называют рацемизацией. Рацемизация каждой L-аминокислоты при данной температуре идёт с определённой скоростью. Все 20 аминокислот в организме человека различаются по строению, размерам и физико-химическим свойствам радикалов, присоединённых к?-углеродному атому.

    2. Классификация аминокислот по химическому строению радикалов

    По химическому строению аминокислоты можно разделить на алифатические, ароматические и гетероциклические

    В составе алифатических радикалов могут находиться функциональные группы, придающие им специфические свойства: карбоксильная (-СООН), амино (-NH 2), тиольная (-SH), амидная (-CO-NH 2), гидроксильная (-ОН) и гуанидиновая группы.

    Для записи аминокислотных остатков в молекулах пептидов и белков используют трёхбуквенные сокращения их тривиальных названий, а в некоторых случаях и однобуквенные символы

    3. Классификация аминокислот по растворимости их радикалов в воде

    Все 20 аминокислот в белках организма человека можно сгруппировать по способности их радикалов растворяться в воде. Радикалы можно выстроить в непрерывный ряд, начинающийся полностью гидрофобными и заканчивающийся сильно гидрофильными.

    Растворимость радикалов аминокислот определяется полярностью функциональных групп, входящих в состав молекулы (полярные группы притягивают воду, неполярные её отталкивают).

    Аминокислоты с неполярными радикалами

    К неполярным (гидрофобным) относят радикалы, имеющие алифатические углеводородные цепи (радикалы аланина, валина, лейцина, изолейцина, пролина и метионина) и ароматические кольца (радикалы фенилаланина и триптофана). Радикалы таких аминокислот в воде стремятся друг к другу или к другим гидрофобным молекулам, в результате чего поверхность соприкосновения их с водой уменьшается.

    Аминокислоты с полярными незаряженными радикалами

    Радикалы этих аминокислот лучше, чем гидрофобные радикалы, растворяются в воде, так как в их состав входят полярные функциональные группы, образующие водородные связи с водой. К ним относят серии, треонин и тирозин, имеющие гидроксильные группы, аспарагин и глутамин, содержащие амидные группы, и цистеин с его тиольной группой.

    Аминокислоты с полярными отрицательно заряженными радикалами

    К этой группе относят аспарагиновую и глутаминовую аминокислоты, имеющие в радикале дополнительную карбоксильную группу, при рН около 7,0 диссоциирующую с образованием СОО - и Н + . Следовательно, радикалы данных аминокислот - анионы. Ионизированные формы глутаминовой и аспарагиновой кислот называют соответственно глутаматом и аспартатом.

    Аминокислоты с полярными положительно заряженными радикалами

    Дополнительную положительно заряженную группу в радикале имеют лизин и аргинин. У лизина вторая аминогруппа, способная присоединять Н + , располагается в?-положении алифатической цепи, а у аргинина положительный заряд приобретает, гуанидиновая группа, Кроме того, гистидин содержит слабо ионизированную имидазольную группу, поэтому при физиологических колебаниях значений рН (от 6,9 до 7,4) гистидин заряжен либо нейтрально, либо положительно. При увеличении количества протонов в среде имидазольная группа гистидина способна присоединять протон, приобретая положительный заряд, а при увеличении концентрации гидроксильных групп - отдавать протон, теряя положительный заряд радикала. Положительно заряженные радикалы - катионы.Наибольшей растворимостью в воде обладают полярные заряженные радикалы аминокислот.

    4. Изменение суммарного заряда аминокислот в зависимости от рН среды

    При нейтральных значениях рН все кислотные (способные отдавать Н +) и все основные (способные присоединять Н +) функциональные группы находятся в диссоциированном состоянии.

    Поэтому в нейтральной среде аминокислоты, содержащие недиссоциирующий радикал, имеют суммарный нулевой заряд. Аминокислоты, содержащие кислотные функциональные группы, имеют суммарный отрицательный заряд, а аминокислоты, содержащие основные функциональные группы, - положительный заряд

    Изменение рН в кислую сторону (т.е. повышение в среде концентрации Н +) приводит к подавлению диссоциации кислотных групп. В сильно кислой среде все аминокислоты приобретают положительный заряд.

    Напротив, увеличение концентрации ОН - групп вызывает отщепление Н + от основных функциональных групп, что приводит к уменьшению положительного заряда. В сильно щелочной среде все аминокислоты имеют суммарный отрицательный заряд.

    5. Модифицированные аминокислоты, присутствующие в белках

    Непосредственно в синтезе белков организма человека принимают участие только 20 перечисленных аминокислот. Однако в некоторых белках имеются нестандартные модифицированные аминокислоты - производные одной из этих 20 аминокислот.

    Модификации аминокислотных остатков осуществляются уже в составе белков, т.е. только после окончания их синтеза. Введение дополнительных функциональных групп в структуру аминокислот придаёт белкам свойства, необходимые для выполнения ими специфических функций.

    6. Химические реакции, используемые для обнаружения аминокислот

    Для обнаружения и количественного определения аминокислот, находящихся в растворе, можно использовать нингидриновую реакцию.

    Эта реакция основана на том, что бесцветный нингидрин, реагируя с аминокислотой, конденсируется в виде димера через атом азота, отщепляемый от?-аминогруппы аминокислоты. В результате образуется пигмент красно-фиолетового цвета. Одновременно происходит декарбоксилирование аминокислоты, что приводит к образованию СО 2 и соответствующего альдегида. Нингидриновую реакцию широко используют при изучении первичной структуры белков Так как интенсивность окраски пропорциональна количеству аминокислот в растворе, её используют для измерения концентрации?-аминокислот.

    Специфические реакции на отдельные аминокислоты

    Качественное и количественное определение отдельных аминокислот возможно благодаря наличию в их радикалах особенных функциональных групп.

    Аргинин определяют с помощью качественной реакции на гуанидиновую группу (реакция Сакагучи), а цистеин выявляют реакцией Фоля, специфичной на SH-группу данной аминокислоты. Наличие ароматических аминокислот в растворе определяют ксантопротеиновой реакцией (реакция нитрования), а наличие гидроксильной группы в ароматическом кольце тирозина - с помощью реакции Миллона.

    Б. Пептидная связь. Строение и биологические свойства пептидов

    3.Биологическая роль пептидов

    В организме человека вырабатывается множество пептидов, участвующих в регуляции различных биологических процессов и обладающих высокой физиологической активностью.

    Функции пептидов зависят от их первичной структуры. Ангиотензин I по структуре очень похож на ангиотензин II (имеет только две дополнительные аминокислоты с С-конца), но при этом не обладает биологической активностью.

    Изменение в аминокислотном составе пептидов часто приводит к потере одних и возникновению других биологических свойств.

    Так как пептиды - мощные регуляторы биологических процессов, их можно использовать как лекарственные препараты. Основное препятствие для терапевтического использования - их быстрое разрушение в организме. Одним из важнейших результатов исследований является не только изучение структуры пептидов, но и получение синтетических аналогов природных пептидов с целенаправленными изменениями в их структуре и функциях.

    Открытые и изученные в настоящее время пептиды можно разделить на группы по их основному физиологическому действию:

      пептиды, обладающие гормональной активностью (окситоцин, вазопрессин, рилизинг-гормоны гипоталамуса, меланоцитстимулирующий гормон, глюкагон и др.);

      пептиды, регулирующие процессы пищеварения (гастрин, холецистокинин, вазоинтестиналшый пептид, желудочный ингибирующий пептид и др.);

      пептиды, регулирующие тонус сосудов и АД (брадикинин, калидин, ангиотензин II);

      пептиды, регулирующие аппетит (лептин, нейропептид Y, меланоцитстимулирующий гормон, (?-эндорфины);

      пептиды, обладающие обезболивающим действием (энкефалины и эндорфины и другие опиоидные пептиды). Обезболивающий эффект этих пептидов в сотни раз превосходит анальгезирующий эффект морфина;

      пептиды, участвующие в регуляции высшей нервной деятельности, в биохимических процессах, связанных с механизмами сна, обучения, памяти, возникновения чувства страха и т.д.

    3. Первичная структура белков. Пептидная связь, ее характеристика (прочность, кратность, компланарность, цис- ,транс- изомерия). Значение первичной структуры для нормального функционирования белков (на примере гемоглобина S ).

    Первичной структурой белков называется линейная полипептидная цепь из аминокислот, соединенных между собой пептидными связями. Первичная структура - простейший уровень структурной организации белковой молекулы. Высокую стабильность ей придают ковалентные пептидные связи между α-аминогруппой одной аминокислоты и α-карбоксильной группой другой аминокислоты

    Если в образовании пептидной связи участвует иминогруппа пролина или гидроксипролина, то она имеет другой вид.

    При образовании пептидных связей в клетках сначала активируется карбоксильная группа одной аминокислоты, а затем она соединяется с аминогруппой другой. Примерно так же проводят лабораторный синтез полипептидов.

    Пептидная связь является повторяющимся фрагментом полипептидной цепи. Она имеет ряд особенностей, которые влияют не только на форму первичной структуры, но и на высшие уровни организации полипептидной цепи:

      копланарность - все атомы, входящие в пептидную группу, находятся в одной плоскости;

      способность существовать в двух резонансных формах (кето- или енольной форме);

      транс-положение заместителей по отношению к С-N-связи;

      способность к образованию водородных связей, причем каждая из пептидных групп может образовывать две водородные связи с другими группами, в том числе и пептидными.

    Исключение составляют пептидные группы с участием аминогруппы пролина или гидроксипролина. Они способны образовывать только одну водородную связь. Это сказывается на формировании вторичной структуры белка. Полипептидная цепь на участке, где находится пролин или гидроксипролин, легко изгибается, так как не удерживается, как обычно, второй водородной связью.

    Особенности первичной структуры белка . В остове полипептидной цепи чередуются жесткие структуры (плоские пептидные группы) с относительно подвижными участками (-СНR), которые способны вращаться вокруг связей. Такие особенности строения полипептидной цепи влияют на укладку ее в пространстве.

    2.Характеристика пептидной связи

    Пептидная связь имеет характеристику частично двойной связи, поэтому она короче, чем остальные связи пептидного остова, и вследствие этого мало подвижна. Электронное строение пептидной связи определяет плоскую жёсткую структуру пептидной группы. Плоскости пептидных групп расположены под углом друг к другу.

    Связь между?-углеродным атомом и?-аминогруппой или?-карбоксильной группой способна к свободным вращениям (хотя ограничена размером и характером радикалов), что позволяет полипептидной цепи принимать различные конфигурации.

    Пептидные связи обычно расположены в транс-конфигурации, т.е. ?-углеродные атомы располагаются по разные стороны от пептидной связи. В результате боковые радикалы аминокислот находятся на наиболее удалённом расстоянии друг от друга в пространстве.

    Пептидные связи очень прочны и самопроизвольно не разрываются при нормальных условиях, существующих в клетках (нейтральная среда, температура тела). В лабораторных условиях гидролиз пептидных связей белков проводят в запаянной ампуле с концентрированной (6 моль/л) соляной кислотой, при температуре более 105 °С, причём полный гидролиз белка до свободных аминокислот проходит примерно за сутки.

    В живых организмах пептидные связи в белках разрываются с помощью специальных протеолитических ферментов (от англ, protein - белок, lysis - разрушение), называемых также протеазами, или пептидгидролазами.

    Для обнаружения в растворе белков и пептидов, а также для их количественного определения используют биуретовую реакцию (положительный результат для веществ, содержащих в своём составе не менее двух пептидных связей).

    Химическая природа каждого белка уникальна и тесно связана с его биологической функцией. Способность белка выполнять присущую ему функцию определяется его первичной структурой. Даже небольшие изменения в последовательности аминокислот в белке могут привести к серьезному нарушению в его функционировании, возникновению тяжелого заболевания. Болезни, связанные с нарушениями первичной структуры белка, получили название молекулярных. К настоящему времени открыто несколько тысяч таких болезней. Одной из молекулярных болезней является серповидноклеточная анемия, причина которой кроется в нарушении первичной структуры гемоглобина. У людей с врожденной аномалией структуры гемоглобина в полипептидной цепочке, состоящей из 146 аминокислотных остатков, в шестом положении находится валин, тогда как у здоровых людей на этом месте - глутаминовая кислота. Аномальный гемоглобин хуже транспортирует кислород, а эритроциты крови больных имеют серповидную форму. Заболевание проявляется в замедлении развития, общей слабости организма.

    Белки, их структура и биологические функции. Ферменты.

    Все химические вещества делят на две группы: органические и неорганические.

    Неорганические вещества: вода, минеральные соли и кислоты.

    Органические вещества – это соединения углерода , которые возникли в живых организмах или являются продуктами их жизнедеятельности.

    Органические вещества составляют в среднем 20-30% массы клетки живых организмов.

    Органические вещества: белки, липиды, углеводы и нуклеиновые кислоты.

    Молекулы этих веществ имеют очень большую молекулярную массу, состав их молекул входят тысячи, десятки тысяч или даже миллионы атомов, поэтому их называют макромолекулами (биополимерами ).

    Биополимеры состоят из одинаковых или схожих звеньев – мономеров, которые последовательно связаны между собой ковалентной связью.

    Если обозначить тип мономера определенной буквой, например А , то полимер можно изобразить в виде очень длинного сочетания мономерных звеньев: А-А-А-А-...-А. Если соединить два типа мономеров А и Б, можно получить очень большой набор разнообразных полимеров, например Б Б А Б Б А Б Б А Б Б... Т.об. мономеры служат строительным материалом для полимеров.

    Большинство липидов образуются из глицерина и жирных кислот, но их будет рассмотрен отдельно. Помимо образования макромолекул малые биологические молекулы выполняют и различные специальные функции.

    Ряд органических веществ относится к биологически активным веществам: гормоны, пигменты, витамины и т.д. Они влияют на процессы обмена веществ и преобразование энергии, осуществляют гормональную регуляцию процессов жизнедеятельности организма.

    Среди органических веществ белки занимают первое место, как по количеству, так и по значению. У животных на них приходится около 50% сухой массы клетки.

    Белки – это высокомолекулярные азотосодержащие биополимеры, мономерами которых являются остатки аминокислот.

    Название «белки» происходит от способности многих из них при нагревании становится белыми.

    Белки обладают большой молекулярной массой: яичный альбумин - 36 000, гемоглобин - 152 000, миозин - 500 000. Для сравнения: молекулярная масса спирта - 46, уксусной кислоты - 60, бензола - 78.

    Если белки состоят только из аминокислот, их называют простыми (протеины) .

    Если белки содержат помимо аминокислот еще и небелковый компонент, их называют сложными (протеиды) . Небелковый компонент может быть углеводом (гликопротеиды ), липидами (липопротеиды ), нуклеиновыми кислотами (нуклеопротеиды ).

    Аминокислотный состав белков

    Чем выше уровень организации живых существ, тем разнообразнее состав белков. В организме человека встречается около 5 млн типов белков. Но несмотря на такое разнообразие, обычно белки построены всего из 20 различных аминокислот, а огромное разнообразие белков обеспечивается различными комбинациями этих аминокислот.

    М ономерами белков являются α-аминокислоты .

    Все аминокислоты содержат :

    1) карбоксильную группу (–СООН ) – обеспечивает кислотные свойства,

    2) аминогруппу (–NH 2 ) – обеспечивает основные свойства,

    3) радикал или R -группу (остальная часть молекулы). У разных аминокислот радикалы отличаются.

    Строение радикала у разных видов аминокислот - различное. В зависимости от количества аминогрупп и карбоксильных групп, входящих в состав аминокислот, различают: нейтральные аминокислоты , имеющие одну карбоксильную группу и одну аминогруппу; основные аминокислоты , имеющие более одной аминогруппы; кислые аминокислоты , имеющие более одной карбоксильной группы.

    Аминокислоты являются амфотерными соединениями , так как в растворе они могут выступать как в роли кислот, так и оснований. В водных растворах аминокислоты существуют в разных ионных формах.

    В зависимости от того, могут ли аминокислоты синтезироваться в организме человека и других животных, различают:

    заменимые аминокислоты - могут синтезироваться;

    незаменимые аминокислоты- не могут синтезироваться.

    Незаменимые аминокислоты должны поступать в организм вместе с пищей. Незаменимые аминокислоты, которые не синтезируются человеческим организмом.

    Для разных видов животных и людей разного возраста набор незаменимых аминокислот неодинаковый, например аргинин и гистидин заменимы для взрослых и незаменимы для детей.

    Белки, которые содержат все незаменимые аминокислоты, называют полноценными . Неполноценные белки – белки, в состав которых не входят некоторые незаменимые кислоты.

    Недостаток незаменимых аминокислот вызывает такие проблемы, как:

    · нарушение обмена веществ (организм начинает потреблять аминокислоты из белков соединительной ткани, мышц, крови и печени, ведь поддерживать нормальную работу сердца и мозга – наиболее важных органов, в итоге - истощение),

    · в детском возрасте – задержка роста и развития ,

    · потерю массы тела ,

    · снижение иммунитета и депрессии .

    · При занятиях спортом недостаток незаменимых аминокислот резко увеличивает риск травм и снижает спортивные результаты.

    Незаменимые кислоты содержатся в следующих продуктах:

    · Валин – в зерновых, грибах, мясе, молочных продуктах, сое, арахисе.

    · Изолейцин – в орехах кешью и миндале, курином мясе и яйцах, рыбе, печени, мясе, ржи, чечевице, сое и в большинстве семян.

    · Лейцин – в мясе и рыбе, орехах, чечевице, буром рисе и также в большинстве семян.

    · Лизин – в рыбе, мясе, молоке и молочных продуктах, пшенице и орехах.

    · Метионин – в молоке, рыбе, яйцах, мясе, бобовых.

    · Треонин – в яйцах и молочных продуктах.

    · Триптофан – в мясе, бананах, финиках, кунжуте, арахисе, овсе.

    · Фенилаланин – в говядине, курице, рыбе, яйцах, сое, молоке и твороге.

    Норма потребления белка в сутки составляет 1,5 г на 1 кг веса . При больших физических нагрузках норма возрастает. До недавнего времени считалось, что норма потребления белка - 150 г ежедневно, сегодня официально признанная норма - 30-45 г.

    Что происходит с мясом, если поместить его в теплую влажную среду?

    Оно начинает гнить. В организме человека точно также накапливаются продукты гниения, которые необходимо нейтрализовать. С помощью специальных реакций.

    Потребление избыточного количества белка вызывает интоксикацию организма - отравление продуктами распада белков. Существует легенда, что в древнем Китае применялся вид казни, когда преступника кормили исключительно вареным мясом. Через пару месяцев почки прекращали справляться с выведением продуктов белкового распада, вследствие чего наступало отравление организма.

    Вегетарианцы – не едят мяса.

    Веганы – строгие вегетарианцы, они не приемлют насилия над животными. Не едят мясо, рыбу, молоко, масло, сыр, яйца, не используют кожу, шерсть и мех.

    Растения синтезируют все виды аминокислот. Чтобы получить полный набор незаменимых аминокислот из растительных продуктов, желательно сочетать злаки, бобовые, орехи, овощи и фрукты.

    Строение белков

    Остатки аминокислот в составе белков соединяются между собой пептидной связью: между карбоксильной группой одной аминокислоты и аминогруппой другой.

    При взаимодействии двух аминокислот образуется дипептид.

    Полипептиды – структуры, которые состоят из 20-50 остатков аминокислот. На одном конце пептида находится свободная аминогруппа (его называют N-концом), а на другом - свободная карбоксильная группа (его называют С-концом).

    Белки это полипептиды с высокой молекулярной массой, содержат свыше 50 аминокислотных остатков.

    Уровни структурной организации белков

    Известно четыре уровня структурной организации белков: первичная структура, вторичная, третичная и четвертичная.

    Первичная

    Это последовательность аминокислот в полипептидной цепи. Определяется качественным и количественным составом аминокислот.

    Замена всего лишь одной аминокислоты на другую в полипептидной цепочке приводит к изменению свойств и функций белка. Например, замена в β-субъединице гемоглобина шестой глутаминовой аминокислоты на валин приводит к тому, что молекула гемоглобина в целом не может выполнять свою основную функцию - транспорт кислорода; в таких случаях у человека развивается заболевание - серповидноклеточная анемия.

    Вторичная

    Это пространственное расположение полипептидной цепи.

    Чаще всего полипептидная цепь полностью или частично закручивается в спираль. Радикалы аминокислот находятся с внешней стороны спирали, внутри спирали находятся амино- и карбоксильная группа. Стабилизация витка происходит благодаря водородным связям, возникающим между карбоксильной и аминогруппой. Водородные связи гораздо слабее пептидных.

    Третичная

    Обусловлена способностью полипептидной спирали закручиваться в клубок (глобулу ), благодаря дисульфидным связям. Поддержание третичной структуры обеспечивают дисульфидные связи, гидрофобные взаимодействия и ионные связи.

    При этом белок скручивается так, что гидрофобные боковые цепи погружены вглубь молекулы и защищают ее от взаимодействия с водой, а снаружи расположены боковые гидрофилбные цепи.

    Третичную структуру имеют большинство белков. Для каждого вида белка характерна своя форма клубка с изгибами и петлями.

    4) Четвертичная

    Образуется когда объединятся несколько глобул. Субъединицы удерживаются в молекуле благодаря ионным, гидрофобным и электростатическим взаимодействиям. Например молекула гемоглобина состоит из четырех остатков молекул белка миоглобина.

    Свойства белков

    Свойства белков обусловлены их аминокислотным составом и пространственной структурой.

    По способности растворяться в воде белки подразделяются на глобулярные (растворимые) и фибриллярные (нерастворимые).

    Что происходит при варке яиц с белком?

    Денатурация – это процесс нарушения природной структуры белка, который сопровождается разворачиванием белковой молекулы без нарушения первичной структуры.

    Денатурацию могут вызвать нагревание, ультрафиолетовое излучение, тяжелые металлы и их соли, изменения рН, радиация, обезвоживание.

    Причиной денатурации является разрыв связей, стабилизирующих определенную структуру белка. Первоначально рвутся наиболее слабые связи, а при ужесточении условий и более сильные. Поэтому сначала утрачивается четвертичная, затем третичная и вторичная структуры. Изменение пространственной конфигурации приводит к изменению свойств белка и, как следствие, делает невозможным выполнение белком свойственных ему биологических функций.

    Чаще всего денатурация необратима, но бывает иногда возможна ренатурация - процесс восстановления структуры белка после денатурации (в таком случае это была обратимая денатурация).

    Если восстановление пространственной конфигурации белка невозможно, то денатурация называется необратимой .

    Деструкция – необратимый процесс разрушения первичной структуры.

    Функции белков

    Функция Примеры и пояснения
    Строительная Белки участвуют в образовании клеточных и внеклеточных структур: входят в состав клеточных мембран (липопротеины, гликопротеины), волос (кератин), сухожилий (коллаген) и т.д.
    Транспортная Белок крови гемоглобин присоединяет кислород и транспортирует его от легких ко всем тканям и органам, а от них в легкие переносит углекислый газ; в состав клеточных мембран входят особые белки, которые обеспечивают активный и строго избирательный перенос некоторых веществ и ионов из клетки во внешнюю среду и обратно.
    Регуляторная Гормоны белковой природы принимают участие в регуляции процессов обмена веществ. Например, гормон инсулин регулирует уровень глюкозы в крови, способствует синтезу гликогена, увеличивает образование жиров из углеводов.
    Защитная В ответ на проникновение в организм чужеродных белков или микроорганизмов (антигенов ) образуются особые белки - антитела, способные связывать и обезвреживать их. Фибрин , образующийся из фибриногена, способствует остановке кровотечений.
    Двигательная Сократительные белки актин и миозин обеспечивают сокращение мышц у многоклеточных животных.
    Сигнальная В поверхностную мембрану клетки встроены молекулы белков (рецепторы ), способных изменять свою третичную структуру в ответ на действие факторов внешней среды, таким образом осуществляя прием сигналов из внешней среды и передачу команд в клетку.
    Запасающая В организме животных белки, как правило, не запасаются, исключение: альбумин яиц, казеин молока. Но благодаря белкам в организме могут откладываться про запас некоторые вещества, например, при распаде гемоглобина железо не выводится из организма, а сохраняется, образуя комплекс с белком ферритином.
    Энергетическая При распаде 1г белка до конечных продуктов выделяется 17,6 кДж. Сначала белки распадаются до аминокислот, а затем до конечных продуктов - воды, углекислого газа и аммиака. Однако в качестве источника энергии белки используются только тогда, когда другие источники (углеводы и жиры) израсходованы.
    Каталитическая Одна из важнейших функций белков. Обеспечивается белками - ферментами , которые ускоряют биохимические реакции, происходящие в клетках.
    Функция антифриза В плазме крови некоторых живых организмов содержатся белки которые предупреждают ее замерзание в условиях низких температур.
    | следующая лекция ==>

    Глава III. БЕЛКИ

    § 6. АМИНОКИСЛОТЫ КАК СТРУКТУРНЫЕ ЭЛЕМЕНТЫ БЕЛКОВ

    Природные аминокислоты

    Аминокислоты в живых организмах встречаются преимущественно в составе белков. Белки построены в основном двадцатью стандартными аминокислотами. Они являются a-аминокислотами и отличаются друг от друга строением боковых групп (радикалов), обозначаемых буквой R:

    Разнообразие боковых радикалов аминокислот играет ключевую роль при формировании пространственной структуры белков, при функционировании активного центра ферментов.

    Структура стандартных аминокислот приведена в конце параграфа в табл.3. Природные аминокислоты имеют тривиальные названия, оперировать которыми при записях структуры белков неудобно. Поэтому для них введены трехбуквенные и однобуквенные обозначения, которые также представлены в табл.3.

    Пространственная изомерия

    У всех аминокислот, за исключением глицина, a-углеродный атом является хиральным, т.е. для них характерна оптическая изомерия. В табл. 3 хиральный атом углерода обозначен звездочкой. Например, для аланина проекции Фишера обоих изомеров выглядят следующим образом:

    Для их обозначения, как и для углеводов, используется D, L-номенклатура. В состав белков входят только L-аминокислоты.

    L- и D-изомеры могут взаимно превращаться друг в друга. Этот процесс называется рацемизацией.

    Интересно знать! В белке зубов – дентине – L -аспарагиновая кислота самопроизвольно рацемизуется при температуре человеческого тела со скорость 0,10 % в год. В период формирования зубов в дентине содержится только L -аспарагиновая кислота, у взрослого же человека в результате рацемизации образуется D -аспарагиновая кислота. Чем старше человек, тем выше содержание D-изомера. Определив соотношение D- и L-изомеров, можно достаточно точно установить возраст. Так были изобличены жители горных селений Эквадора, приписывавшие себе слишком большой возраст.

    Химические свойства

    Аминокислоты содержат амино- и карбоксильную группы. В силу этого они проявляют амфотерные свойства, то есть свойства и кислот и оснований.

    При растворении аминокислоты в воде, например, глицина, его карбоксильная группа диссоциирует с образованием иона водорода. Далее ион водорода присоединяется за счет неподеленной пары электронов у атома азота к аминогруппе. Образуется ион, в котором одновременно присутствуют положительный и отрицательный заряды, так называемый цвиттер-ион:

    Такая форма аминокислоты является преобладающей в нейтральном растворе. В кислой среде аминокислота, присоединяя ион водорода, образует катион:

    В щелочной среде образуется анион:

    Таким образом, в зависимости от рН среды аминокислота может быть положительно заряженной, отрицательно заряженной и электронейтральной (при равенстве положительных и отрицательных зарядов). Значение рН раствора, при котором суммарный заряд аминокислоты равен нулю, называется изоэлектрической точкой данной аминокислоты. Для многих аминокислот изоэлектрическая точка лежит вблизи рН 6. Например, изоэлектрические точки глицина и аланина имеют значения 5,97 и 6,02 соответственно.

    Две аминокислоты могут реагировать друг с другом, в результате чего отщепляется молекула воды и образуется продукт, который называется дипептидом :

    Связь, соединяющая две аминокислоты, носит название пептидной связи . Если пользоваться буквенными обозначениями аминокислот, образование дипептида можно схематически представить следующим образом:

    Аналогично образуются трипептиды, тетрапептиды и т.д.:

    H 2 N – лиз – ала – гли – СООН – трипептид

    H 2 N – трп – гис – ала – ала – СООН – тетрапептид

    H 2 N – тир – лиз – гли – ала – лей – гли – трп – СООН – гептапептид

    Пептиды, состоящие из небольшого числа аминокислотных остатков, имеют общее название олигопептиды .

    Интересно знать! Многие олигопептиды обладают высокой биологической активностью. К ним относится ряд гормонов, например, окситоцин (нанопептид) стимулирует сокращение матки, брадикинин (нанопептид) подавляет воспалительные процессы в тканях. Антибиотик грамицидин С (циклический декапептид) нарушает регуляцию ионной проницаемости в мембранах бактерий и тем самым убивает их. Грибные яды аманитины (октапептиды), блокируя синтез белка, способны вызвать сильное отравление у человека. Широко известен аспартам - метиловый эфир аспартилфенилаланина. Аспартам имеет сладкий вкус и используется для придания сладкого вкуса различным продуктам, напиткам.

    Классификация аминокислот

    Существует несколько подходов к классификации аминокислот, но наиболее предпочтительной является классификация, основанная на строении их радикалов. Выделяют четыре класса аминокислот, содержащих радикалы следующих типов; 1) неполярные (или гидрофобные); 2) полярные незаряженные; 3) отрицательно заряженные и 4) положительно заряженные:


    К неполярным (гидрофобным) относятся аминокислоты с неполярными алифатическими (аланин, валин, лейцин, изолейцин) или ароматическими (фенилаланин и триптофан) R-группами и одна серусодержащая аминокислота – метионин.

    Полярные незаряженные аминокислоты в сравнении с неполярными лучше растворяются в воде, более гидрофильны, так как их функциональные группы образуют водородные связи с молекулами воды. К ним относятся аминокислоты, содержащие полярную НО-группу (серин, треонин и тирозин), HS-группу (цистеин), амидную группу (глутамин, аспарагин) и глицин (R-группа глицина, представленная одним атомом водорода, слишком мала, чтобы компенсировать сильную полярность a-аминогруппы и a-карбоксильной группы).

    Аспарагиновая и глутаминовая кислоты относятся к отрицательно заряженным аминокислотам. Они содержат по две карбоксильные и по одной аминогруппе, поэтому в ионизированном состоянии их молекулы будут иметь суммарный отрицательный заряд:

    К положительно заряженным аминокислотам принадлежат лизин, гистидин и аргинин, в ионизированном виде они имеют суммарный положительный заряд:

    В зависимости от характера радикалов природные аминокислоты также подразделяются на нейтральные, кислые и основные . К нейтральным относятся неполярные и полярные незаряженные, к кислым – отрицательно заряженные, к основным – положительно заряженные.

    Десять из 20 аминокислот, входящих в состав белков, могут синтезироваться в человеческом организме. Остальные должны содержаться в нашей пище. К ним относятся аргинин, валин, изолейцин, лейцин, лизин, метионин, треонин, триптофан, фенилаланин и гистидин. Эти аминокислоты называются незаменимыми. Незаменимые аминокислоты входят часто в состав пищевых добавок, используются в качестве лекарственных препаратов.

    Интересно знать! Исключительно важную роль играет сбалансированность питания человека по аминокислотам. При недостатке незаменимых аминокислот в пище организм саморазрушается. При этом страдает в первую очередь головной мозг, что приводит к различным заболеваниям центральной нервной системы, психическим расстройствам. Особенно уязвим молодой растущий организм. Так, например, при нарушении синтеза тирозина из фенилаланина у детей развивается тяжелое заболевание финилпировиноградная олигофрения, вызывающее тяжелую умственную отсталость или гибель ребенка.

    Таблица 3

    Стандартные аминокислоты

    Аминокислота

    (тривиальное название)

    Условные обозначения

    Структурная формула

    Латинское

    трехбук- венное

    однобук-венное

    НЕПОЛЯРНЫЕ (ГИДРОФОБНЫЕ)

    Изолейцин

    Фенилаланин

    Триптофан

    Метионин

    ПОЛЯРНЫЕ НЕЗАРЯЖЕННЫЕ

    Аспарагин

    Глутамин

    Многие из нас знают, что белки необходимы организму, так как в них содержатся аминокислоты. Но далеко не все понимают, что собой представляют эти элементы и почему их наличие в рационе так важно. Сегодня мы выясним, сколько аминокислот входит в как они классифицируются и какую функцию выполняют.

    Что такое аминокислоты?

    Итак, аминокислоты (аминокарбоновые к-ты) - это органические соединения, которые являются основным элементом, образующим структуру белка. Белки, в свою очередь, принимают участие во всех физиологических процессах человеческого организма. Они формируют кости, сухожилия, связки, внутренние органы, мышцы, ногти и волосы. Белки становятся частью организма в процессе синтеза аминокислот, пришедших с пищей. Следовательно, не белок является важным питательным веществом, а именно аминокислоты. И не все белки одинаково полезны, ведь у каждого из них свой уникальный состав этих самых кислот.

    Довольно сложна, рассмотрим ее на базовом уровне. Мы знаем, что аминокарбоновые кислоты являются своеобразными строительными блоками в здании под названием белок и в мегаполисе под названием человек. Однако не во всех белках есть именно те элементы, которые нам нужны. Если взглянуть на белок под микроскопом, можно увидеть цепочку из аминокислот, которые соединяются пептидными связями. Грубо говоря, звенья этой цепочки служат в нашем организме ремонтным и строительным материалом.

    Удивительно, но было время, когда ученые не знали о том, сколько различных аминокислот входит в состав белков. Большинство из них были открыты в 19, а остальные в 20-м веке. Ученым понадобилось 119 лет, чтобы окончательно ответить на вопрос: «Сколько аминокислот входит в состав белка?» Строение каждой из них изучалось еще дольше.

    На сегодняшний день известно, что для нормальной жизнедеятельности человеческого организма необходимо 20 протеиногенных аминокарбоновых кислот. Эту двадцатку часто называют мажорными кислотами. С точки зрения химии, их классифицируют по множеству признаков. Но простым обывателям наиболее близка классификация по способности кислот синтезироваться в нашем организме. По этому признаку аминокислоты бывают заменимыми и незаменимыми.

    В этой классификации есть некоторые недостатки. К примеру, аргинин в некоторых физиологических состояниях считается незаменимым, но он может синтезироваться организмом. А гистидин восполняется в столь малых количествах, что его все-таки необходимо принимать с пищей.

    Теперь, когда мы знаем, сколько видов аминокислот входит в состав белков, рассмотрим подробнее оба вида.

    Незаменимые (эссенциальные)

    Как вы уже поняли, эти вещества не могут самостоятельно синтезироваться организмом, поэтому их необходимо употреблять с едой. Основное количество незаменимых органических кислот содержится в животных белках. Когда в организме недостает того или иного элемента, он начинает забирать его с мышечной ткани. Этот класс состоит из 8 кислот. Познакомимся с каждой из них.

    Лейцин

    Эта кислота отвечает за восстановление и защиту мышечных тканей, кожных покровов и костей. Именно благодаря лейцину выделяется гормон роста. Кроме того, эта органическая кислота регулирует уровень сахара в крови и способствует сжиганию жиров. Она содержится в мясе, орехах, бобовых, нешлифованном рисе и зернах пшеницы. Лецитин стимулирует а значит, способствует наращиванию мышечной массы.

    Изолейцин

    Эта кислота ускоряет выработку энергии, поэтому ее так любят спортсмены. После изнурительных занятий она помогает быстрому восстановлению мышечных волокон. Изолейцин снимает так называемую крепатуру, принимает участие в образовании гемоглобина и регулирует количество сахара. Больше всего изолейцина содержится в мясе, рыбе, яйцах, орехах, горохе и сое.

    Лизин

    Данная аминокислота играет важную роль в работе иммунной системы. Ее главная задача - синтез антител, которые защищают наш организм от воздействия вирусов и аллергенов. Кроме того, лизин регулирует процесс обновления костной ткани и коллагена, а также гормоны роста. Эту органическую кислоту можно найти в таких продуктах питания, как: яйца, картофель, красное мясо, рыба и кисломолочные продукты.

    Фенилаланин

    Эта альфа-аминокислота отвечает за нормальную работу центральной нервной системы. Ее недостаток в организме приводит к приступам депрессии и хроническим болезням. Фенилаланин помогает нам концентрироваться и запоминать нужную информацию. Входит в состав препаратов, используемых при лечении психических расстройств, в том числе болезни Паркинсона. Положительно сказывается на работе печени и поджелудочной железы. Аминокислота содержится в: орехах, грибах, курице, молочных продуктах, бананах, абрикосах и топинамбуре.

    Метионин

    Мало кто знает, сколько аминокислот входит в состав белка, зато многим известно, что метионин активно сжигает жировые ткани. Но это далеко не все полезные свойства данной кислоты. Она влияет на выносливость и работоспособность человека. Если ее в организме недостаточно, это сразу можно понять по коже и ногтям. Метионин встречается в таких продуктах питания, как: мясо, рыба, семена подсолнечника, бобовые, лук, чеснок и кисломолочные продукты.

    Треонин

    Стремясь узнать, сколько аминокислот входит в состав белка, ученные открыли такое вещество, как треонин, одним из последних. А ведь оно очень даже полезно для человека. Треонин отвечает за все важнейшие системы человеческого организма, а именно за нервную, иммунную и сердечно-сосудистую. Первый признак его недостатка - проблемы с зубами и костями. Больше всего треонина человек получает из молочных продуктов, мяса, грибов, овощей и злаков.

    Триптофан

    Еще одно важнейшее вещество. Оно отвечает за синтез серотонина, который часто называют гормоном хорошего настроения. Недостаток триптофана можно обнаружить по нарушениям сна, аппетита. Данная кислота также регулирует функцию дыхания и артериальное давление. Она содержится преимущественно в: морепродуктах, красном мясе, птице, кисломолочных продуктах и пшенице.

    Валин

    Выполняет функцию восстановления поврежденных волокон и следит за обменными процессами в мышцах. При сильных нагрузках может оказывать стимулирующее действие. Также играет роль в умственной деятельности человека. Помогает при лечении печени и головного мозга от негативных воздействий алкоголя и наркотиков. Человек может получить валин из: мяса, грибов, сои, молочных продуктов и арахиса.

    Примечательно, что 70% всех органических кислот в нашем организме занимают всего три аминокислоты: лейцин, изолейцин и валин. Поэтому они считаются самыми важными в обеспечении нормальной жизнедеятельности организма. В спортивном питании даже выделили специальный комплекс ВСАА, которые содержит именно эти три кислоты.

    Продолжаем отвечать на вопрос о том, сколько мажорных аминокислот входит в состав белка, и переходим к заменимым представителям класса.

    Заменимые

    Главное отличие этой группы состоит в том, что все ее представители могут образовываться в организме путем эндогенного синтеза. Слово «заменимые» вводит многих в заблуждение. Поэтому часто неосведомленные люди говорят, что эти аминокислоты необязательно употреблять с пищей. Конечно же, это не так! Заменимые кислоты, так же как и эссенциальные, обязательно должны быть в составе каждодневного рациона. Они действительно могут образовываться из других веществ. Но происходит это только в случае, когда рацион составлен неправильно. Тогда часть полезных веществ и эссенциальных кислот затрачивается на воссоздание заменимых кислот. Следовательно, это не совсем благоприятно для организма. Разберем незаменимые кислоты, входящие в «мажорную двадцатку».

    Аланин

    Способствует ускорению метаболизма углеводов и выведению из печени токсинов. Встречается в таких продуктах питания, как: мясо, птица, яйца, рыба и молочные продукты.

    Аспарагиновая кислота

    Считается универсальным топливом для нашего организма, так как значительно улучшает обмен веществ. Встречается в молоке, тростниковом сахаре, птице и говядине.

    Аспарагин

    Пытаясь ответить на вопрос: «Сколько аминокислот входит в состав белка?», ученые в первую очередь открыли именно аспарагин. Было это в далеком 1806 году. Данная кислота принимает участие в улучшении работы нервной системы. Она содержится во всех животных белках, а также орехах, картофеле и злаках.

    Гистидин

    Является важным строительным элементом всех внутренних органов. Играет едва ли не ключевую роль в образовании красных и белых кровяных телец. Положительно влияет на иммунную систему и половую функцию. Из-за широкого спектра применения, запасы гистидина в организме быстро истощаются. Поэтому важно принимать его с пищей. Содержится в мясных, молочных и злаковых продуктах.

    Серин

    Стимулирует работу головного мозга и центральной нервной системы. Встречается в таких продуктах, как: мясо, соя, злаки, арахис.

    Цистеин

    Эта аминокислота в организме отвечает за синтез кератина. Без нее не было бы здоровых ногтей, волос и кожи. Находится в таких продуктах, как: мясо, яйца, красный перец, чеснок, лук и брокколи.

    Аргинин

    Говоря о том, сколько протеиногенных аминокислот входит в состав белков и какие функции они выполняют, мы убедились в том, что каждая из них важна для организма. Однако есть кислоты, которые, по мнению экспертов, считаются наиболее значимыми. К таковым относится аргинин. Он отвечает за здоровую работу мышц, суставов, кожного покрова и печени, а также укрепляет иммунитет и сжигает жиры. Аргинин часто используют бодибилдеры и те, кто желает похудеть, в составе добавок. В природном виде он встречается в мясе, орехах, молоке, злаках и желатине.

    Глютаминовая кислота

    Является важным элементом для здоровой работы головного и спинного мозга. Часто продается в виде добавки «Глутамат натрия». Встречается в яйцах, мясе, молочных продуктах, рыбе, моркови, кукурузе, помидорах и шпинате.

    Глутамин

    Нужен в белках для роста и поддержки мышц. Также является «топливом» головного мозга. Кроме того, глутамин выводит из печени все то, что поступает туда с нездоровой пищей. При термической обработке кислота денатурирует, поэтому, чтобы ее восполнить, нужно употреблять петрушку и шпинат в сыром виде.

    Глицин

    Помогает крови сворачиваться, а глюкозе - перерабатываться в энергию. Встречается в мясе, рыбе, бобовых и молоке.

    Пролин

    Отвечает за синтез коллагена. При недостатке в организме пролина начинаются проблемы с суставами. Встречается в основном в животных белках, поэтому является едва ли не единственным веществом, с нехваткой которого сталкиваются люди, не употребляющие мясо.

    Тирозин

    Отвечает за регулировку артериального давления и аппетит. При недостатке этой кислоты человек страдает быстрой утомляемостью. Чтобы таких проблем не было, нужно есть бананы, семечки, орехи и авокадо.

    Продукты, богатые аминокислотами

    Теперь вы знаете, сколько аминокислот входит в состав белка. Функции и место нахождения каждой из них вам тоже известны. Отметим главные продукты, употребляя которые, можно не переживать о сбалансированности питания в плане аминокислот.

    Яйца . Отлично усваиваются организмом, дают ему большое количество аминокислот и обеспечивают белковую подкормку.

    Молочные продукты . Способны обеспечить человека множеством полезных веществ, спектр которых, кстати говоря, не ограничивается органическими кислотами.

    Мясо . Пожалуй, первый источник белка и входящих в него веществ.

    Рыба . Богата на белок и отлично усвояема организмом.

    Многие абсолютно уверены, что без продуктов животного происхождения нельзя обеспечить организм должным количеством белка. Это совершенно неверно. И доказательством тому является огромное количество вегетарианцев с прекрасной физической формой. Среди растительных продуктов главными источниками аминокислот являются: бобовые, орехи, крупы, семена.

    Заключение

    Сегодня мы узнали, сколько аминокислот входит в состав белка. Группы веществ и подробное описание их представителей помогут вам сориентироваться в составлении рациона здорового питания.